Inverse van $$$y = \sec{\left(x \right)}$$$

De rekenmachine zal proberen de inverse van de functie $$$y = \sec{\left(x \right)}$$$ te vinden, waarbij de stappen worden getoond.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal de inverse van de functie $$$y = \sec{\left(x \right)}$$$.

Oplossing

Om de inverse functie te vinden, wissel $$$x$$$ en $$$y$$$ om en los de resulterende vergelijking op naar $$$y$$$.

Dit betekent dat de inverse de spiegeling van de functie is ten opzichte van de lijn $$$y = x$$$.

Als de oorspronkelijke functie niet injectief is, dan zal er meer dan één inverse bestaan.

Dus, wissel de variabelen om: $$$y = \sec{\left(x \right)}$$$ wordt $$$x = \sec{\left(y \right)}$$$.

Los nu de vergelijking $$$x = \sec{\left(y \right)}$$$ op naar $$$y$$$.

$$$y = \left\{2 \pi n_{1} + \operatorname{acos}{\left(\frac{1}{x} \right)}\; \middle|\; n_{1} \in \mathbb{Z}\right\}$$$

$$$y = \left\{2 \pi n_{1} - \operatorname{acos}{\left(\frac{1}{x} \right)}\; \middle|\; n_{1} \in \mathbb{Z}\right\}$$$

Antwoord

$$$y = \left\{2 \pi n_{1} + \operatorname{acos}{\left(\frac{1}{x} \right)}\; \middle|\; n_{1} \in \mathbb{Z}\right\}$$$A

$$$y = \left\{2 \pi n_{1} - \operatorname{acos}{\left(\frac{1}{x} \right)}\; \middle|\; n_{1} \in \mathbb{Z}\right\}$$$A

Grafiek: zie de graphing calculator.


Please try a new game Rotatly