$$$2^{n}$$$의 적분
사용자 입력
$$$\int 2^{n}\, dn$$$을(를) 구하시오.
풀이
Apply the exponential rule $$$\int{a^{n} d n} = \frac{a^{n}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$${\color{red}{\int{2^{n} d n}}} = {\color{red}{\frac{2^{n}}{\ln{\left(2 \right)}}}}$$
따라서,
$$\int{2^{n} d n} = \frac{2^{n}}{\ln{\left(2 \right)}}$$
적분 상수를 추가하세요:
$$\int{2^{n} d n} = \frac{2^{n}}{\ln{\left(2 \right)}}+C$$
정답
$$$\int 2^{n}\, dn = \frac{2^{n}}{\ln\left(2\right)} + C$$$A
Please try a new game Rotatly