Integral de $$$2^{n}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int 2^{n}\, dn$$$.
Solución
Apply the exponential rule $$$\int{a^{n} d n} = \frac{a^{n}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$${\color{red}{\int{2^{n} d n}}} = {\color{red}{\frac{2^{n}}{\ln{\left(2 \right)}}}}$$
Por lo tanto,
$$\int{2^{n} d n} = \frac{2^{n}}{\ln{\left(2 \right)}}$$
Añade la constante de integración:
$$\int{2^{n} d n} = \frac{2^{n}}{\ln{\left(2 \right)}}+C$$
Respuesta
$$$\int 2^{n}\, dn = \frac{2^{n}}{\ln\left(2\right)} + C$$$A
Please try a new game Rotatly