$$$2^{n}$$$の積分
入力内容
$$$\int 2^{n}\, dn$$$ を求めよ。
解答
Apply the exponential rule $$$\int{a^{n} d n} = \frac{a^{n}}{\ln{\left(a \right)}}$$$ with $$$a=2$$$:
$${\color{red}{\int{2^{n} d n}}} = {\color{red}{\frac{2^{n}}{\ln{\left(2 \right)}}}}$$
したがって、
$$\int{2^{n} d n} = \frac{2^{n}}{\ln{\left(2 \right)}}$$
積分定数を加える:
$$\int{2^{n} d n} = \frac{2^{n}}{\ln{\left(2 \right)}}+C$$
解答
$$$\int 2^{n}\, dn = \frac{2^{n}}{\ln\left(2\right)} + C$$$A
Please try a new game Rotatly