$$$u$$$에 대한 $$$\frac{u}{v}$$$의 적분

계산기는 $$$u$$$에 대한 $$$\frac{u}{v}$$$의 적분/원시함수를 단계별로 찾아줍니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{u}{v}\, du$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{v}$$$$$$f{\left(u \right)} = u$$$에 적용하세요:

$${\color{red}{\int{\frac{u}{v} d u}}} = {\color{red}{\frac{\int{u d u}}{v}}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=1$$$에 적용합니다:

$$\frac{{\color{red}{\int{u d u}}}}{v}=\frac{{\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{v}=\frac{{\color{red}{\left(\frac{u^{2}}{2}\right)}}}{v}$$

따라서,

$$\int{\frac{u}{v} d u} = \frac{u^{2}}{2 v}$$

적분 상수를 추가하세요:

$$\int{\frac{u}{v} d u} = \frac{u^{2}}{2 v}+C$$

정답

$$$\int \frac{u}{v}\, du = \frac{u^{2}}{2 v} + C$$$A


Please try a new game Rotatly