$$$\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}$$$의 적분
관련 계산기: 정적분 및 가적분 계산기
사용자 입력
$$$\int \tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}\, dx$$$을(를) 구하시오.
풀이
시컨트 두 개를 떼어 내고, $$$\alpha=3 x$$$에 대해 $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$ 공식을 사용하여 나머지는 모두 탄젠트로 표현하세요.:
$${\color{red}{\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} \sec^{2}{\left(3 x \right)} d x}}}$$
$$$u=\tan{\left(3 x \right)}$$$라 하자.
그러면 $$$du=\left(\tan{\left(3 x \right)}\right)^{\prime }dx = 3 \sec^{2}{\left(3 x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\sec^{2}{\left(3 x \right)} dx = \frac{du}{3}$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} \sec^{2}{\left(3 x \right)} d x}}} = {\color{red}{\int{\frac{u^{2} \left(u^{2} + 1\right)}{3} d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(u \right)} = u^{2} \left(u^{2} + 1\right)$$$에 적용하세요:
$${\color{red}{\int{\frac{u^{2} \left(u^{2} + 1\right)}{3} d u}}} = {\color{red}{\left(\frac{\int{u^{2} \left(u^{2} + 1\right) d u}}{3}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{u^{2} \left(u^{2} + 1\right) d u}}}}{3} = \frac{{\color{red}{\int{\left(u^{4} + u^{2}\right)d u}}}}{3}$$
각 항별로 적분하십시오:
$$\frac{{\color{red}{\int{\left(u^{4} + u^{2}\right)d u}}}}{3} = \frac{{\color{red}{\left(\int{u^{2} d u} + \int{u^{4} d u}\right)}}}{3}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:
$$\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\int{u^{2} d u}}}}{3}=\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{3}=\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{3}$$
멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=4$$$에 적용합니다:
$$\frac{u^{3}}{9} + \frac{{\color{red}{\int{u^{4} d u}}}}{3}=\frac{u^{3}}{9} + \frac{{\color{red}{\frac{u^{1 + 4}}{1 + 4}}}}{3}=\frac{u^{3}}{9} + \frac{{\color{red}{\left(\frac{u^{5}}{5}\right)}}}{3}$$
다음 $$$u=\tan{\left(3 x \right)}$$$을 기억하라:
$$\frac{{\color{red}{u}}^{3}}{9} + \frac{{\color{red}{u}}^{5}}{15} = \frac{{\color{red}{\tan{\left(3 x \right)}}}^{3}}{9} + \frac{{\color{red}{\tan{\left(3 x \right)}}}^{5}}{15}$$
따라서,
$$\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x} = \frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}$$
적분 상수를 추가하세요:
$$\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x} = \frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}+C$$
정답
$$$\int \tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}\, dx = \left(\frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}\right) + C$$$A