Integral dari $$$\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}\, dx$$$.

Solusi

Keluarkan dua faktor sekan dan nyatakan sisanya dalam bentuk tangen, menggunakan rumus $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$ dengan $$$\alpha=3 x$$$:

$${\color{red}{\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} \sec^{2}{\left(3 x \right)} d x}}}$$

Misalkan $$$u=\tan{\left(3 x \right)}$$$.

Kemudian $$$du=\left(\tan{\left(3 x \right)}\right)^{\prime }dx = 3 \sec^{2}{\left(3 x \right)} dx$$$ (langkah-langkah dapat dilihat di »), dan kita memperoleh $$$\sec^{2}{\left(3 x \right)} dx = \frac{du}{3}$$$.

Dengan demikian,

$${\color{red}{\int{\left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} \sec^{2}{\left(3 x \right)} d x}}} = {\color{red}{\int{\frac{u^{2} \left(u^{2} + 1\right)}{3} d u}}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ dengan $$$c=\frac{1}{3}$$$ dan $$$f{\left(u \right)} = u^{2} \left(u^{2} + 1\right)$$$:

$${\color{red}{\int{\frac{u^{2} \left(u^{2} + 1\right)}{3} d u}}} = {\color{red}{\left(\frac{\int{u^{2} \left(u^{2} + 1\right) d u}}{3}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{u^{2} \left(u^{2} + 1\right) d u}}}}{3} = \frac{{\color{red}{\int{\left(u^{4} + u^{2}\right)d u}}}}{3}$$

Integralkan suku demi suku:

$$\frac{{\color{red}{\int{\left(u^{4} + u^{2}\right)d u}}}}{3} = \frac{{\color{red}{\left(\int{u^{2} d u} + \int{u^{4} d u}\right)}}}{3}$$

Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:

$$\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\int{u^{2} d u}}}}{3}=\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{3}=\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{3}$$

Terapkan aturan pangkat $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=4$$$:

$$\frac{u^{3}}{9} + \frac{{\color{red}{\int{u^{4} d u}}}}{3}=\frac{u^{3}}{9} + \frac{{\color{red}{\frac{u^{1 + 4}}{1 + 4}}}}{3}=\frac{u^{3}}{9} + \frac{{\color{red}{\left(\frac{u^{5}}{5}\right)}}}{3}$$

Ingat bahwa $$$u=\tan{\left(3 x \right)}$$$:

$$\frac{{\color{red}{u}}^{3}}{9} + \frac{{\color{red}{u}}^{5}}{15} = \frac{{\color{red}{\tan{\left(3 x \right)}}}^{3}}{9} + \frac{{\color{red}{\tan{\left(3 x \right)}}}^{5}}{15}$$

Oleh karena itu,

$$\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x} = \frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}$$

Tambahkan konstanta integrasi:

$$\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x} = \frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}+C$$

Jawaban

$$$\int \tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}\, dx = \left(\frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}\right) + C$$$A


Please try a new game Rotatly