$$$\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}$$$ 的积分

该计算器将求出$$$\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}\, dx$$$

解答

提取出两个正割,并将其余部分用正切表示,使用公式 $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$,令 $$$\alpha=3 x$$$:

$${\color{red}{\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} \sec^{2}{\left(3 x \right)} d x}}}$$

$$$u=\tan{\left(3 x \right)}$$$

$$$du=\left(\tan{\left(3 x \right)}\right)^{\prime }dx = 3 \sec^{2}{\left(3 x \right)} dx$$$ (步骤见»),并有$$$\sec^{2}{\left(3 x \right)} dx = \frac{du}{3}$$$

因此,

$${\color{red}{\int{\left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} \sec^{2}{\left(3 x \right)} d x}}} = {\color{red}{\int{\frac{u^{2} \left(u^{2} + 1\right)}{3} d u}}}$$

$$$c=\frac{1}{3}$$$$$$f{\left(u \right)} = u^{2} \left(u^{2} + 1\right)$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$

$${\color{red}{\int{\frac{u^{2} \left(u^{2} + 1\right)}{3} d u}}} = {\color{red}{\left(\frac{\int{u^{2} \left(u^{2} + 1\right) d u}}{3}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{u^{2} \left(u^{2} + 1\right) d u}}}}{3} = \frac{{\color{red}{\int{\left(u^{4} + u^{2}\right)d u}}}}{3}$$

逐项积分:

$$\frac{{\color{red}{\int{\left(u^{4} + u^{2}\right)d u}}}}{3} = \frac{{\color{red}{\left(\int{u^{2} d u} + \int{u^{4} d u}\right)}}}{3}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$

$$\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\int{u^{2} d u}}}}{3}=\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{3}=\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{3}$$

应用幂法则 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=4$$$

$$\frac{u^{3}}{9} + \frac{{\color{red}{\int{u^{4} d u}}}}{3}=\frac{u^{3}}{9} + \frac{{\color{red}{\frac{u^{1 + 4}}{1 + 4}}}}{3}=\frac{u^{3}}{9} + \frac{{\color{red}{\left(\frac{u^{5}}{5}\right)}}}{3}$$

回忆一下 $$$u=\tan{\left(3 x \right)}$$$:

$$\frac{{\color{red}{u}}^{3}}{9} + \frac{{\color{red}{u}}^{5}}{15} = \frac{{\color{red}{\tan{\left(3 x \right)}}}^{3}}{9} + \frac{{\color{red}{\tan{\left(3 x \right)}}}^{5}}{15}$$

因此,

$$\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x} = \frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}$$

加上积分常数:

$$\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x} = \frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}+C$$

答案

$$$\int \tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}\, dx = \left(\frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}\right) + C$$$A


Please try a new game Rotatly