$$$\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}$$$ 的積分
相關計算器: 定積分與廣義積分計算器
您的輸入
求$$$\int \tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}\, dx$$$。
解答
提出兩個正割,並使用公式 $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$(其中 $$$\alpha=3 x$$$),將其餘全部用正切表示:
$${\color{red}{\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} \sec^{2}{\left(3 x \right)} d x}}}$$
令 $$$u=\tan{\left(3 x \right)}$$$。
則 $$$du=\left(\tan{\left(3 x \right)}\right)^{\prime }dx = 3 \sec^{2}{\left(3 x \right)} dx$$$ (步驟見»),並可得 $$$\sec^{2}{\left(3 x \right)} dx = \frac{du}{3}$$$。
所以,
$${\color{red}{\int{\left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} \sec^{2}{\left(3 x \right)} d x}}} = {\color{red}{\int{\frac{u^{2} \left(u^{2} + 1\right)}{3} d u}}}$$
套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{3}$$$ 與 $$$f{\left(u \right)} = u^{2} \left(u^{2} + 1\right)$$$:
$${\color{red}{\int{\frac{u^{2} \left(u^{2} + 1\right)}{3} d u}}} = {\color{red}{\left(\frac{\int{u^{2} \left(u^{2} + 1\right) d u}}{3}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{u^{2} \left(u^{2} + 1\right) d u}}}}{3} = \frac{{\color{red}{\int{\left(u^{4} + u^{2}\right)d u}}}}{3}$$
逐項積分:
$$\frac{{\color{red}{\int{\left(u^{4} + u^{2}\right)d u}}}}{3} = \frac{{\color{red}{\left(\int{u^{2} d u} + \int{u^{4} d u}\right)}}}{3}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\int{u^{2} d u}}}}{3}=\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{3}=\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{3}$$
套用冪次法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=4$$$:
$$\frac{u^{3}}{9} + \frac{{\color{red}{\int{u^{4} d u}}}}{3}=\frac{u^{3}}{9} + \frac{{\color{red}{\frac{u^{1 + 4}}{1 + 4}}}}{3}=\frac{u^{3}}{9} + \frac{{\color{red}{\left(\frac{u^{5}}{5}\right)}}}{3}$$
回顧一下 $$$u=\tan{\left(3 x \right)}$$$:
$$\frac{{\color{red}{u}}^{3}}{9} + \frac{{\color{red}{u}}^{5}}{15} = \frac{{\color{red}{\tan{\left(3 x \right)}}}^{3}}{9} + \frac{{\color{red}{\tan{\left(3 x \right)}}}^{5}}{15}$$
因此,
$$\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x} = \frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}$$
加上積分常數:
$$\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x} = \frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}+C$$
答案
$$$\int \tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}\, dx = \left(\frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}\right) + C$$$A