Funktion $$$\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}$$$ integraali

Laskin löytää funktion $$$\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}\, dx$$$.

Ratkaisu

Ota kaksi sekanttia erilleen ja ilmaise kaikki muu tangenttifunktion avulla, käyttäen kaavaa $$$\sec^2\left( \alpha \right)=\tan^2\left( \alpha \right) + 1$$$, jossa $$$\alpha=3 x$$$:

$${\color{red}{\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x}}} = {\color{red}{\int{\left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} \sec^{2}{\left(3 x \right)} d x}}}$$

Olkoon $$$u=\tan{\left(3 x \right)}$$$.

Tällöin $$$du=\left(\tan{\left(3 x \right)}\right)^{\prime }dx = 3 \sec^{2}{\left(3 x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\sec^{2}{\left(3 x \right)} dx = \frac{du}{3}$$$.

Siis,

$${\color{red}{\int{\left(\tan^{2}{\left(3 x \right)} + 1\right) \tan^{2}{\left(3 x \right)} \sec^{2}{\left(3 x \right)} d x}}} = {\color{red}{\int{\frac{u^{2} \left(u^{2} + 1\right)}{3} d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{3}$$$ ja $$$f{\left(u \right)} = u^{2} \left(u^{2} + 1\right)$$$:

$${\color{red}{\int{\frac{u^{2} \left(u^{2} + 1\right)}{3} d u}}} = {\color{red}{\left(\frac{\int{u^{2} \left(u^{2} + 1\right) d u}}{3}\right)}}$$

Expand the expression:

$$\frac{{\color{red}{\int{u^{2} \left(u^{2} + 1\right) d u}}}}{3} = \frac{{\color{red}{\int{\left(u^{4} + u^{2}\right)d u}}}}{3}$$

Integroi termi kerrallaan:

$$\frac{{\color{red}{\int{\left(u^{4} + u^{2}\right)d u}}}}{3} = \frac{{\color{red}{\left(\int{u^{2} d u} + \int{u^{4} d u}\right)}}}{3}$$

Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:

$$\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\int{u^{2} d u}}}}{3}=\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{3}=\frac{\int{u^{4} d u}}{3} + \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{3}$$

Sovella potenssisääntöä $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=4$$$:

$$\frac{u^{3}}{9} + \frac{{\color{red}{\int{u^{4} d u}}}}{3}=\frac{u^{3}}{9} + \frac{{\color{red}{\frac{u^{1 + 4}}{1 + 4}}}}{3}=\frac{u^{3}}{9} + \frac{{\color{red}{\left(\frac{u^{5}}{5}\right)}}}{3}$$

Muista, että $$$u=\tan{\left(3 x \right)}$$$:

$$\frac{{\color{red}{u}}^{3}}{9} + \frac{{\color{red}{u}}^{5}}{15} = \frac{{\color{red}{\tan{\left(3 x \right)}}}^{3}}{9} + \frac{{\color{red}{\tan{\left(3 x \right)}}}^{5}}{15}$$

Näin ollen,

$$\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x} = \frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}$$

Lisää integrointivakio:

$$\int{\tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)} d x} = \frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}+C$$

Vastaus

$$$\int \tan^{2}{\left(3 x \right)} \sec^{4}{\left(3 x \right)}\, dx = \left(\frac{\tan^{5}{\left(3 x \right)}}{15} + \frac{\tan^{3}{\left(3 x \right)}}{9}\right) + C$$$A


Please try a new game Rotatly