$$$\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}\, dx$$$을(를) 구하시오.

풀이

$$$u=7 x$$$라 하자.

그러면 $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dx = \frac{du}{7}$$$임을 얻습니다.

적분은 다음과 같이 다시 쓸 수 있습니다.

$${\color{red}{\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x}}} = {\color{red}{\int{\frac{\tan{\left(u \right)} \sec^{5}{\left(u \right)}}{7} d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{7}$$$$$$f{\left(u \right)} = \tan{\left(u \right)} \sec^{5}{\left(u \right)}$$$에 적용하세요:

$${\color{red}{\int{\frac{\tan{\left(u \right)} \sec^{5}{\left(u \right)}}{7} d u}}} = {\color{red}{\left(\frac{\int{\tan{\left(u \right)} \sec^{5}{\left(u \right)} d u}}{7}\right)}}$$

$$$v=\sec{\left(u \right)}$$$라 하자.

그러면 $$$dv=\left(\sec{\left(u \right)}\right)^{\prime }du = \tan{\left(u \right)} \sec{\left(u \right)} du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\tan{\left(u \right)} \sec{\left(u \right)} du = dv$$$임을 얻습니다.

따라서,

$$\frac{{\color{red}{\int{\tan{\left(u \right)} \sec^{5}{\left(u \right)} d u}}}}{7} = \frac{{\color{red}{\int{v^{4} d v}}}}{7}$$

멱법칙($$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=4$$$에 적용합니다:

$$\frac{{\color{red}{\int{v^{4} d v}}}}{7}=\frac{{\color{red}{\frac{v^{1 + 4}}{1 + 4}}}}{7}=\frac{{\color{red}{\left(\frac{v^{5}}{5}\right)}}}{7}$$

다음 $$$v=\sec{\left(u \right)}$$$을 기억하라:

$$\frac{{\color{red}{v}}^{5}}{35} = \frac{{\color{red}{\sec{\left(u \right)}}}^{5}}{35}$$

다음 $$$u=7 x$$$을 기억하라:

$$\frac{\sec^{5}{\left({\color{red}{u}} \right)}}{35} = \frac{\sec^{5}{\left({\color{red}{\left(7 x\right)}} \right)}}{35}$$

따라서,

$$\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x} = \frac{\sec^{5}{\left(7 x \right)}}{35}$$

적분 상수를 추가하세요:

$$\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x} = \frac{\sec^{5}{\left(7 x \right)}}{35}+C$$

정답

$$$\int \tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}\, dx = \frac{\sec^{5}{\left(7 x \right)}}{35} + C$$$A


Please try a new game Rotatly