$$$\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}$$$ 的積分

此計算器將求出 $$$\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}\, dx$$$

解答

$$$u=7 x$$$

$$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (步驟見»),並可得 $$$dx = \frac{du}{7}$$$

因此,

$${\color{red}{\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x}}} = {\color{red}{\int{\frac{\tan{\left(u \right)} \sec^{5}{\left(u \right)}}{7} d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{7}$$$$$$f{\left(u \right)} = \tan{\left(u \right)} \sec^{5}{\left(u \right)}$$$

$${\color{red}{\int{\frac{\tan{\left(u \right)} \sec^{5}{\left(u \right)}}{7} d u}}} = {\color{red}{\left(\frac{\int{\tan{\left(u \right)} \sec^{5}{\left(u \right)} d u}}{7}\right)}}$$

$$$v=\sec{\left(u \right)}$$$

$$$dv=\left(\sec{\left(u \right)}\right)^{\prime }du = \tan{\left(u \right)} \sec{\left(u \right)} du$$$ (步驟見»),並可得 $$$\tan{\left(u \right)} \sec{\left(u \right)} du = dv$$$

因此,

$$\frac{{\color{red}{\int{\tan{\left(u \right)} \sec^{5}{\left(u \right)} d u}}}}{7} = \frac{{\color{red}{\int{v^{4} d v}}}}{7}$$

套用冪次法則 $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=4$$$

$$\frac{{\color{red}{\int{v^{4} d v}}}}{7}=\frac{{\color{red}{\frac{v^{1 + 4}}{1 + 4}}}}{7}=\frac{{\color{red}{\left(\frac{v^{5}}{5}\right)}}}{7}$$

回顧一下 $$$v=\sec{\left(u \right)}$$$

$$\frac{{\color{red}{v}}^{5}}{35} = \frac{{\color{red}{\sec{\left(u \right)}}}^{5}}{35}$$

回顧一下 $$$u=7 x$$$

$$\frac{\sec^{5}{\left({\color{red}{u}} \right)}}{35} = \frac{\sec^{5}{\left({\color{red}{\left(7 x\right)}} \right)}}{35}$$

因此,

$$\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x} = \frac{\sec^{5}{\left(7 x \right)}}{35}$$

加上積分常數:

$$\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x} = \frac{\sec^{5}{\left(7 x \right)}}{35}+C$$

答案

$$$\int \tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}\, dx = \frac{\sec^{5}{\left(7 x \right)}}{35} + C$$$A


Please try a new game Rotatly