Funktion $$$\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}$$$ integraali

Laskin löytää funktion $$$\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}\, dx$$$.

Ratkaisu

Olkoon $$$u=7 x$$$.

Tällöin $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$dx = \frac{du}{7}$$$.

Siis,

$${\color{red}{\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x}}} = {\color{red}{\int{\frac{\tan{\left(u \right)} \sec^{5}{\left(u \right)}}{7} d u}}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{7}$$$ ja $$$f{\left(u \right)} = \tan{\left(u \right)} \sec^{5}{\left(u \right)}$$$:

$${\color{red}{\int{\frac{\tan{\left(u \right)} \sec^{5}{\left(u \right)}}{7} d u}}} = {\color{red}{\left(\frac{\int{\tan{\left(u \right)} \sec^{5}{\left(u \right)} d u}}{7}\right)}}$$

Olkoon $$$v=\sec{\left(u \right)}$$$.

Tällöin $$$dv=\left(\sec{\left(u \right)}\right)^{\prime }du = \tan{\left(u \right)} \sec{\left(u \right)} du$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$\tan{\left(u \right)} \sec{\left(u \right)} du = dv$$$.

Integraali voidaan kirjoittaa muotoon

$$\frac{{\color{red}{\int{\tan{\left(u \right)} \sec^{5}{\left(u \right)} d u}}}}{7} = \frac{{\color{red}{\int{v^{4} d v}}}}{7}$$

Sovella potenssisääntöä $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=4$$$:

$$\frac{{\color{red}{\int{v^{4} d v}}}}{7}=\frac{{\color{red}{\frac{v^{1 + 4}}{1 + 4}}}}{7}=\frac{{\color{red}{\left(\frac{v^{5}}{5}\right)}}}{7}$$

Muista, että $$$v=\sec{\left(u \right)}$$$:

$$\frac{{\color{red}{v}}^{5}}{35} = \frac{{\color{red}{\sec{\left(u \right)}}}^{5}}{35}$$

Muista, että $$$u=7 x$$$:

$$\frac{\sec^{5}{\left({\color{red}{u}} \right)}}{35} = \frac{\sec^{5}{\left({\color{red}{\left(7 x\right)}} \right)}}{35}$$

Näin ollen,

$$\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x} = \frac{\sec^{5}{\left(7 x \right)}}{35}$$

Lisää integrointivakio:

$$\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x} = \frac{\sec^{5}{\left(7 x \right)}}{35}+C$$

Vastaus

$$$\int \tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}\, dx = \frac{\sec^{5}{\left(7 x \right)}}{35} + C$$$A


Please try a new game Rotatly