$$$\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}\, dx$$$.
Çözüm
$$$u=7 x$$$ olsun.
Böylece $$$du=\left(7 x\right)^{\prime }dx = 7 dx$$$ (adımlar » görülebilir) ve $$$dx = \frac{du}{7}$$$ elde ederiz.
O halde,
$${\color{red}{\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x}}} = {\color{red}{\int{\frac{\tan{\left(u \right)} \sec^{5}{\left(u \right)}}{7} d u}}}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{7}$$$ ve $$$f{\left(u \right)} = \tan{\left(u \right)} \sec^{5}{\left(u \right)}$$$ ile uygula:
$${\color{red}{\int{\frac{\tan{\left(u \right)} \sec^{5}{\left(u \right)}}{7} d u}}} = {\color{red}{\left(\frac{\int{\tan{\left(u \right)} \sec^{5}{\left(u \right)} d u}}{7}\right)}}$$
$$$v=\sec{\left(u \right)}$$$ olsun.
Böylece $$$dv=\left(\sec{\left(u \right)}\right)^{\prime }du = \tan{\left(u \right)} \sec{\left(u \right)} du$$$ (adımlar » görülebilir) ve $$$\tan{\left(u \right)} \sec{\left(u \right)} du = dv$$$ elde ederiz.
Dolayısıyla,
$$\frac{{\color{red}{\int{\tan{\left(u \right)} \sec^{5}{\left(u \right)} d u}}}}{7} = \frac{{\color{red}{\int{v^{4} d v}}}}{7}$$
Kuvvet kuralını $$$\int v^{n}\, dv = \frac{v^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ $$$n=4$$$ ile uygulayın:
$$\frac{{\color{red}{\int{v^{4} d v}}}}{7}=\frac{{\color{red}{\frac{v^{1 + 4}}{1 + 4}}}}{7}=\frac{{\color{red}{\left(\frac{v^{5}}{5}\right)}}}{7}$$
Hatırlayın ki $$$v=\sec{\left(u \right)}$$$:
$$\frac{{\color{red}{v}}^{5}}{35} = \frac{{\color{red}{\sec{\left(u \right)}}}^{5}}{35}$$
Hatırlayın ki $$$u=7 x$$$:
$$\frac{\sec^{5}{\left({\color{red}{u}} \right)}}{35} = \frac{\sec^{5}{\left({\color{red}{\left(7 x\right)}} \right)}}{35}$$
Dolayısıyla,
$$\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x} = \frac{\sec^{5}{\left(7 x \right)}}{35}$$
İntegrasyon sabitini ekleyin:
$$\int{\tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)} d x} = \frac{\sec^{5}{\left(7 x \right)}}{35}+C$$
Cevap
$$$\int \tan{\left(7 x \right)} \sec^{5}{\left(7 x \right)}\, dx = \frac{\sec^{5}{\left(7 x \right)}}{35} + C$$$A