$$$\frac{1}{r^{3}}$$$의 적분
사용자 입력
$$$\int \frac{1}{r^{3}}\, dr$$$을(를) 구하시오.
풀이
멱법칙($$$\int r^{n}\, dr = \frac{r^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=-3$$$에 적용합니다:
$${\color{red}{\int{\frac{1}{r^{3}} d r}}}={\color{red}{\int{r^{-3} d r}}}={\color{red}{\frac{r^{-3 + 1}}{-3 + 1}}}={\color{red}{\left(- \frac{r^{-2}}{2}\right)}}={\color{red}{\left(- \frac{1}{2 r^{2}}\right)}}$$
따라서,
$$\int{\frac{1}{r^{3}} d r} = - \frac{1}{2 r^{2}}$$
적분 상수를 추가하세요:
$$\int{\frac{1}{r^{3}} d r} = - \frac{1}{2 r^{2}}+C$$
정답
$$$\int \frac{1}{r^{3}}\, dr = - \frac{1}{2 r^{2}} + C$$$A
Please try a new game Rotatly