$$$\frac{e^{x}}{16 - 9 e^{2 x}}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\frac{e^{x}}{16 - 9 e^{2 x}}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \frac{e^{x}}{16 - 9 e^{2 x}}\, dx$$$을(를) 구하시오.

풀이

$$$u=e^{x}$$$라 하자.

그러면 $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$e^{x} dx = du$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x}}} = {\color{red}{\int{\left(- \frac{1}{9 u^{2} - 16}\right)d u}}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=-1$$$$$$f{\left(u \right)} = \frac{1}{9 u^{2} - 16}$$$에 적용하세요:

$${\color{red}{\int{\left(- \frac{1}{9 u^{2} - 16}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{9 u^{2} - 16} d u}\right)}}$$

부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):

$$- {\color{red}{\int{\frac{1}{9 u^{2} - 16} d u}}} = - {\color{red}{\int{\left(- \frac{1}{8 \left(3 u + 4\right)} + \frac{1}{8 \left(3 u - 4\right)}\right)d u}}}$$

각 항별로 적분하십시오:

$$- {\color{red}{\int{\left(- \frac{1}{8 \left(3 u + 4\right)} + \frac{1}{8 \left(3 u - 4\right)}\right)d u}}} = - {\color{red}{\left(\int{\frac{1}{8 \left(3 u - 4\right)} d u} - \int{\frac{1}{8 \left(3 u + 4\right)} d u}\right)}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{8}$$$$$$f{\left(u \right)} = \frac{1}{3 u + 4}$$$에 적용하세요:

$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + {\color{red}{\int{\frac{1}{8 \left(3 u + 4\right)} d u}}} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{3 u + 4} d u}}{8}\right)}}$$

$$$v=3 u + 4$$$라 하자.

그러면 $$$dv=\left(3 u + 4\right)^{\prime }du = 3 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{3}$$$임을 얻습니다.

따라서,

$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 u + 4} d u}}}}{8} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8}$$

상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$$$$c=\frac{1}{3}$$$$$$f{\left(v \right)} = \frac{1}{v}$$$에 적용하세요:

$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{3}\right)}}}{8}$$

$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$

다음 $$$v=3 u + 4$$$을 기억하라:

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} - \int{\frac{1}{8 \left(3 u - 4\right)} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(3 u + 4\right)}}}\right| \right)}}{24} - \int{\frac{1}{8 \left(3 u - 4\right)} d u}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=\frac{1}{8}$$$$$$f{\left(u \right)} = \frac{1}{3 u - 4}$$$에 적용하세요:

$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - {\color{red}{\int{\frac{1}{8 \left(3 u - 4\right)} d u}}} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - {\color{red}{\left(\frac{\int{\frac{1}{3 u - 4} d u}}{8}\right)}}$$

$$$v=3 u - 4$$$라 하자.

그러면 $$$dv=\left(3 u - 4\right)^{\prime }du = 3 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{3}$$$임을 얻습니다.

적분은 다음과 같이 다시 쓸 수 있습니다.

$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 u - 4} d u}}}}{8} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8}$$

상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$$$$c=\frac{1}{3}$$$$$$f{\left(v \right)} = \frac{1}{v}$$$에 적용하세요:

$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{3}\right)}}}{8}$$

$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$

다음 $$$v=3 u - 4$$$을 기억하라:

$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{\ln{\left(\left|{{\color{red}{\left(3 u - 4\right)}}}\right| \right)}}{24}$$

다음 $$$u=e^{x}$$$을 기억하라:

$$- \frac{\ln{\left(\left|{-4 + 3 {\color{red}{u}}}\right| \right)}}{24} + \frac{\ln{\left(\left|{4 + 3 {\color{red}{u}}}\right| \right)}}{24} = - \frac{\ln{\left(\left|{-4 + 3 {\color{red}{e^{x}}}}\right| \right)}}{24} + \frac{\ln{\left(\left|{4 + 3 {\color{red}{e^{x}}}}\right| \right)}}{24}$$

따라서,

$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)}}{24} - \frac{\ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}$$

간단히 하시오:

$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)} - \ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}$$

적분 상수를 추가하세요:

$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)} - \ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}+C$$

정답

$$$\int \frac{e^{x}}{16 - 9 e^{2 x}}\, dx = \frac{\ln\left(3 e^{x} + 4\right) - \ln\left(\left|{3 e^{x} - 4}\right|\right)}{24} + C$$$A


Please try a new game Rotatly