$$$\frac{e^{x}}{16 - 9 e^{2 x}}$$$의 적분
사용자 입력
$$$\int \frac{e^{x}}{16 - 9 e^{2 x}}\, dx$$$을(를) 구하시오.
풀이
$$$u=e^{x}$$$라 하자.
그러면 $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$e^{x} dx = du$$$임을 얻습니다.
따라서,
$${\color{red}{\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x}}} = {\color{red}{\int{\left(- \frac{1}{9 u^{2} - 16}\right)d u}}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=-1$$$와 $$$f{\left(u \right)} = \frac{1}{9 u^{2} - 16}$$$에 적용하세요:
$${\color{red}{\int{\left(- \frac{1}{9 u^{2} - 16}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{9 u^{2} - 16} d u}\right)}}$$
부분분수분해를 수행합니다(단계는 »에서 볼 수 있습니다):
$$- {\color{red}{\int{\frac{1}{9 u^{2} - 16} d u}}} = - {\color{red}{\int{\left(- \frac{1}{8 \left(3 u + 4\right)} + \frac{1}{8 \left(3 u - 4\right)}\right)d u}}}$$
각 항별로 적분하십시오:
$$- {\color{red}{\int{\left(- \frac{1}{8 \left(3 u + 4\right)} + \frac{1}{8 \left(3 u - 4\right)}\right)d u}}} = - {\color{red}{\left(\int{\frac{1}{8 \left(3 u - 4\right)} d u} - \int{\frac{1}{8 \left(3 u + 4\right)} d u}\right)}}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{8}$$$와 $$$f{\left(u \right)} = \frac{1}{3 u + 4}$$$에 적용하세요:
$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + {\color{red}{\int{\frac{1}{8 \left(3 u + 4\right)} d u}}} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{3 u + 4} d u}}{8}\right)}}$$
$$$v=3 u + 4$$$라 하자.
그러면 $$$dv=\left(3 u + 4\right)^{\prime }du = 3 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{3}$$$임을 얻습니다.
따라서,
$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 u + 4} d u}}}}{8} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(v \right)} = \frac{1}{v}$$$에 적용하세요:
$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{3}\right)}}}{8}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$
다음 $$$v=3 u + 4$$$을 기억하라:
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} - \int{\frac{1}{8 \left(3 u - 4\right)} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(3 u + 4\right)}}}\right| \right)}}{24} - \int{\frac{1}{8 \left(3 u - 4\right)} d u}$$
상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$을 $$$c=\frac{1}{8}$$$와 $$$f{\left(u \right)} = \frac{1}{3 u - 4}$$$에 적용하세요:
$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - {\color{red}{\int{\frac{1}{8 \left(3 u - 4\right)} d u}}} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - {\color{red}{\left(\frac{\int{\frac{1}{3 u - 4} d u}}{8}\right)}}$$
$$$v=3 u - 4$$$라 하자.
그러면 $$$dv=\left(3 u - 4\right)^{\prime }du = 3 du$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$du = \frac{dv}{3}$$$임을 얻습니다.
적분은 다음과 같이 다시 쓸 수 있습니다.
$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 u - 4} d u}}}}{8} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8}$$
상수배 법칙 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$을 $$$c=\frac{1}{3}$$$와 $$$f{\left(v \right)} = \frac{1}{v}$$$에 적용하세요:
$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{3}\right)}}}{8}$$
$$$\frac{1}{v}$$$의 적분은 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$
다음 $$$v=3 u - 4$$$을 기억하라:
$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{\ln{\left(\left|{{\color{red}{\left(3 u - 4\right)}}}\right| \right)}}{24}$$
다음 $$$u=e^{x}$$$을 기억하라:
$$- \frac{\ln{\left(\left|{-4 + 3 {\color{red}{u}}}\right| \right)}}{24} + \frac{\ln{\left(\left|{4 + 3 {\color{red}{u}}}\right| \right)}}{24} = - \frac{\ln{\left(\left|{-4 + 3 {\color{red}{e^{x}}}}\right| \right)}}{24} + \frac{\ln{\left(\left|{4 + 3 {\color{red}{e^{x}}}}\right| \right)}}{24}$$
따라서,
$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)}}{24} - \frac{\ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}$$
간단히 하시오:
$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)} - \ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}$$
적분 상수를 추가하세요:
$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)} - \ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}+C$$
정답
$$$\int \frac{e^{x}}{16 - 9 e^{2 x}}\, dx = \frac{\ln\left(3 e^{x} + 4\right) - \ln\left(\left|{3 e^{x} - 4}\right|\right)}{24} + C$$$A