Ολοκλήρωμα του $$$\frac{e^{x}}{16 - 9 e^{2 x}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{e^{x}}{16 - 9 e^{2 x}}\, dx$$$.
Λύση
Έστω $$$u=e^{x}$$$.
Τότε $$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$e^{x} dx = du$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$${\color{red}{\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x}}} = {\color{red}{\int{\left(- \frac{1}{9 u^{2} - 16}\right)d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = \frac{1}{9 u^{2} - 16}$$$:
$${\color{red}{\int{\left(- \frac{1}{9 u^{2} - 16}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{9 u^{2} - 16} d u}\right)}}$$
Εκτελέστε αποσύνθεση σε μερικά κλάσματα (τα βήματα μπορούν να προβληθούν »):
$$- {\color{red}{\int{\frac{1}{9 u^{2} - 16} d u}}} = - {\color{red}{\int{\left(- \frac{1}{8 \left(3 u + 4\right)} + \frac{1}{8 \left(3 u - 4\right)}\right)d u}}}$$
Ολοκληρώστε όρο προς όρο:
$$- {\color{red}{\int{\left(- \frac{1}{8 \left(3 u + 4\right)} + \frac{1}{8 \left(3 u - 4\right)}\right)d u}}} = - {\color{red}{\left(\int{\frac{1}{8 \left(3 u - 4\right)} d u} - \int{\frac{1}{8 \left(3 u + 4\right)} d u}\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{8}$$$ και $$$f{\left(u \right)} = \frac{1}{3 u + 4}$$$:
$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + {\color{red}{\int{\frac{1}{8 \left(3 u + 4\right)} d u}}} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{3 u + 4} d u}}{8}\right)}}$$
Έστω $$$v=3 u + 4$$$.
Τότε $$$dv=\left(3 u + 4\right)^{\prime }du = 3 du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$du = \frac{dv}{3}$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 u + 4} d u}}}}{8} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ με $$$c=\frac{1}{3}$$$ και $$$f{\left(v \right)} = \frac{1}{v}$$$:
$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{3}\right)}}}{8}$$
Το ολοκλήρωμα του $$$\frac{1}{v}$$$ είναι $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$
Θυμηθείτε ότι $$$v=3 u + 4$$$:
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} - \int{\frac{1}{8 \left(3 u - 4\right)} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(3 u + 4\right)}}}\right| \right)}}{24} - \int{\frac{1}{8 \left(3 u - 4\right)} d u}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{8}$$$ και $$$f{\left(u \right)} = \frac{1}{3 u - 4}$$$:
$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - {\color{red}{\int{\frac{1}{8 \left(3 u - 4\right)} d u}}} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - {\color{red}{\left(\frac{\int{\frac{1}{3 u - 4} d u}}{8}\right)}}$$
Έστω $$$v=3 u - 4$$$.
Τότε $$$dv=\left(3 u - 4\right)^{\prime }du = 3 du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$du = \frac{dv}{3}$$$.
Επομένως,
$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 u - 4} d u}}}}{8} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ με $$$c=\frac{1}{3}$$$ και $$$f{\left(v \right)} = \frac{1}{v}$$$:
$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{3}\right)}}}{8}$$
Το ολοκλήρωμα του $$$\frac{1}{v}$$$ είναι $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$
Θυμηθείτε ότι $$$v=3 u - 4$$$:
$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{\ln{\left(\left|{{\color{red}{\left(3 u - 4\right)}}}\right| \right)}}{24}$$
Θυμηθείτε ότι $$$u=e^{x}$$$:
$$- \frac{\ln{\left(\left|{-4 + 3 {\color{red}{u}}}\right| \right)}}{24} + \frac{\ln{\left(\left|{4 + 3 {\color{red}{u}}}\right| \right)}}{24} = - \frac{\ln{\left(\left|{-4 + 3 {\color{red}{e^{x}}}}\right| \right)}}{24} + \frac{\ln{\left(\left|{4 + 3 {\color{red}{e^{x}}}}\right| \right)}}{24}$$
Επομένως,
$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)}}{24} - \frac{\ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}$$
Απλοποιήστε:
$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)} - \ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)} - \ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}+C$$
Απάντηση
$$$\int \frac{e^{x}}{16 - 9 e^{2 x}}\, dx = \frac{\ln\left(3 e^{x} + 4\right) - \ln\left(\left|{3 e^{x} - 4}\right|\right)}{24} + C$$$A