$$$\frac{e^{x}}{16 - 9 e^{2 x}}$$$ 的積分

此計算器將求出 $$$\frac{e^{x}}{16 - 9 e^{2 x}}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{e^{x}}{16 - 9 e^{2 x}}\, dx$$$

解答

$$$u=e^{x}$$$

$$$du=\left(e^{x}\right)^{\prime }dx = e^{x} dx$$$ (步驟見»),並可得 $$$e^{x} dx = du$$$

所以,

$${\color{red}{\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x}}} = {\color{red}{\int{\left(- \frac{1}{9 u^{2} - 16}\right)d u}}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=-1$$$$$$f{\left(u \right)} = \frac{1}{9 u^{2} - 16}$$$

$${\color{red}{\int{\left(- \frac{1}{9 u^{2} - 16}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{9 u^{2} - 16} d u}\right)}}$$

進行部分分式分解(步驟可見 »):

$$- {\color{red}{\int{\frac{1}{9 u^{2} - 16} d u}}} = - {\color{red}{\int{\left(- \frac{1}{8 \left(3 u + 4\right)} + \frac{1}{8 \left(3 u - 4\right)}\right)d u}}}$$

逐項積分:

$$- {\color{red}{\int{\left(- \frac{1}{8 \left(3 u + 4\right)} + \frac{1}{8 \left(3 u - 4\right)}\right)d u}}} = - {\color{red}{\left(\int{\frac{1}{8 \left(3 u - 4\right)} d u} - \int{\frac{1}{8 \left(3 u + 4\right)} d u}\right)}}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{8}$$$$$$f{\left(u \right)} = \frac{1}{3 u + 4}$$$

$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + {\color{red}{\int{\frac{1}{8 \left(3 u + 4\right)} d u}}} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{3 u + 4} d u}}{8}\right)}}$$

$$$v=3 u + 4$$$

$$$dv=\left(3 u + 4\right)^{\prime }du = 3 du$$$ (步驟見»),並可得 $$$du = \frac{dv}{3}$$$

因此,

$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 u + 4} d u}}}}{8} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{3}$$$$$$f{\left(v \right)} = \frac{1}{v}$$$

$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{3}\right)}}}{8}$$

$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$

$$- \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = - \int{\frac{1}{8 \left(3 u - 4\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$

回顧一下 $$$v=3 u + 4$$$

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} - \int{\frac{1}{8 \left(3 u - 4\right)} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(3 u + 4\right)}}}\right| \right)}}{24} - \int{\frac{1}{8 \left(3 u - 4\right)} d u}$$

套用常數倍法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$,使用 $$$c=\frac{1}{8}$$$$$$f{\left(u \right)} = \frac{1}{3 u - 4}$$$

$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - {\color{red}{\int{\frac{1}{8 \left(3 u - 4\right)} d u}}} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - {\color{red}{\left(\frac{\int{\frac{1}{3 u - 4} d u}}{8}\right)}}$$

$$$v=3 u - 4$$$

$$$dv=\left(3 u - 4\right)^{\prime }du = 3 du$$$ (步驟見»),並可得 $$$du = \frac{dv}{3}$$$

該積分變為

$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 u - 4} d u}}}}{8} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8}$$

套用常數倍法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$,使用 $$$c=\frac{1}{3}$$$$$$f{\left(v \right)} = \frac{1}{v}$$$

$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{3 v} d v}}}}{8} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\left(\frac{\int{\frac{1}{v} d v}}{3}\right)}}}{8}$$

$$$\frac{1}{v}$$$ 的積分是 $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$

$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{24} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{24}$$

回顧一下 $$$v=3 u - 4$$$

$$\frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{24} = \frac{\ln{\left(\left|{3 u + 4}\right| \right)}}{24} - \frac{\ln{\left(\left|{{\color{red}{\left(3 u - 4\right)}}}\right| \right)}}{24}$$

回顧一下 $$$u=e^{x}$$$

$$- \frac{\ln{\left(\left|{-4 + 3 {\color{red}{u}}}\right| \right)}}{24} + \frac{\ln{\left(\left|{4 + 3 {\color{red}{u}}}\right| \right)}}{24} = - \frac{\ln{\left(\left|{-4 + 3 {\color{red}{e^{x}}}}\right| \right)}}{24} + \frac{\ln{\left(\left|{4 + 3 {\color{red}{e^{x}}}}\right| \right)}}{24}$$

因此,

$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)}}{24} - \frac{\ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}$$

化簡:

$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)} - \ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}$$

加上積分常數:

$$\int{\frac{e^{x}}{16 - 9 e^{2 x}} d x} = \frac{\ln{\left(3 e^{x} + 4 \right)} - \ln{\left(\left|{3 e^{x} - 4}\right| \right)}}{24}+C$$

答案

$$$\int \frac{e^{x}}{16 - 9 e^{2 x}}\, dx = \frac{\ln\left(3 e^{x} + 4\right) - \ln\left(\left|{3 e^{x} - 4}\right|\right)}{24} + C$$$A


Please try a new game Rotatly