$$$2 e^{- x} \sin{\left(2 x \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$2 e^{- x} \sin{\left(2 x \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int 2 e^{- x} \sin{\left(2 x \right)}\, dx$$$을(를) 구하시오.

풀이

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=2$$$$$$f{\left(x \right)} = e^{- x} \sin{\left(2 x \right)}$$$에 적용하세요:

$${\color{red}{\int{2 e^{- x} \sin{\left(2 x \right)} d x}}} = {\color{red}{\left(2 \int{e^{- x} \sin{\left(2 x \right)} d x}\right)}}$$

적분 $$$\int{e^{- x} \sin{\left(2 x \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.

$$$\operatorname{u}=\sin{\left(2 x \right)}$$$$$$\operatorname{dv}=e^{- x} dx$$$라고 하자.

그러면 $$$\operatorname{du}=\left(\sin{\left(2 x \right)}\right)^{\prime }dx=2 \cos{\left(2 x \right)} dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (»에서 풀이 과정을 볼 수 있음).

따라서,

$$2 {\color{red}{\int{e^{- x} \sin{\left(2 x \right)} d x}}}=2 {\color{red}{\left(\sin{\left(2 x \right)} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 2 \cos{\left(2 x \right)} d x}\right)}}=2 {\color{red}{\left(- \int{\left(- 2 e^{- x} \cos{\left(2 x \right)}\right)d x} - e^{- x} \sin{\left(2 x \right)}\right)}}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=-2$$$$$$f{\left(x \right)} = e^{- x} \cos{\left(2 x \right)}$$$에 적용하세요:

$$- 2 {\color{red}{\int{\left(- 2 e^{- x} \cos{\left(2 x \right)}\right)d x}}} - 2 e^{- x} \sin{\left(2 x \right)} = - 2 {\color{red}{\left(- 2 \int{e^{- x} \cos{\left(2 x \right)} d x}\right)}} - 2 e^{- x} \sin{\left(2 x \right)}$$

적분 $$$\int{e^{- x} \cos{\left(2 x \right)} d x}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.

$$$\operatorname{u}=\cos{\left(2 x \right)}$$$$$$\operatorname{dv}=e^{- x} dx$$$라고 하자.

그러면 $$$\operatorname{du}=\left(\cos{\left(2 x \right)}\right)^{\prime }dx=- 2 \sin{\left(2 x \right)} dx$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (»에서 풀이 과정을 볼 수 있음).

따라서,

$$4 {\color{red}{\int{e^{- x} \cos{\left(2 x \right)} d x}}} - 2 e^{- x} \sin{\left(2 x \right)}=4 {\color{red}{\left(\cos{\left(2 x \right)} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot \left(- 2 \sin{\left(2 x \right)}\right) d x}\right)}} - 2 e^{- x} \sin{\left(2 x \right)}=4 {\color{red}{\left(- \int{2 e^{- x} \sin{\left(2 x \right)} d x} - e^{- x} \cos{\left(2 x \right)}\right)}} - 2 e^{- x} \sin{\left(2 x \right)}$$

상수배 법칙 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$$$$c=2$$$$$$f{\left(x \right)} = e^{- x} \sin{\left(2 x \right)}$$$에 적용하세요:

$$- 4 {\color{red}{\int{2 e^{- x} \sin{\left(2 x \right)} d x}}} - 2 e^{- x} \sin{\left(2 x \right)} - 4 e^{- x} \cos{\left(2 x \right)} = - 4 {\color{red}{\left(2 \int{e^{- x} \sin{\left(2 x \right)} d x}\right)}} - 2 e^{- x} \sin{\left(2 x \right)} - 4 e^{- x} \cos{\left(2 x \right)}$$

우리는 이미 보았던 적분에 도달했습니다.

따라서 적분에 관한 다음과 같은 간단한 등식을 얻었습니다:

$$2 \int{e^{- x} \sin{\left(2 x \right)} d x} = - 8 \int{e^{- x} \sin{\left(2 x \right)} d x} - 2 e^{- x} \sin{\left(2 x \right)} - 4 e^{- x} \cos{\left(2 x \right)}$$

이를 풀면, 다음을 얻는다

$$\int{e^{- x} \sin{\left(2 x \right)} d x} = \frac{\left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}$$

따라서,

$$2 {\color{red}{\int{e^{- x} \sin{\left(2 x \right)} d x}}} = 2 {\color{red}{\left(\frac{\left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}\right)}}$$

따라서,

$$\int{2 e^{- x} \sin{\left(2 x \right)} d x} = \frac{2 \left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}$$

적분 상수를 추가하세요:

$$\int{2 e^{- x} \sin{\left(2 x \right)} d x} = \frac{2 \left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}+C$$

정답

$$$\int 2 e^{- x} \sin{\left(2 x \right)}\, dx = \frac{2 \left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5} + C$$$A


Please try a new game Rotatly