Ολοκλήρωμα του $$$2 e^{- x} \sin{\left(2 x \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$2 e^{- x} \sin{\left(2 x \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int 2 e^{- x} \sin{\left(2 x \right)}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=2$$$ και $$$f{\left(x \right)} = e^{- x} \sin{\left(2 x \right)}$$$:

$${\color{red}{\int{2 e^{- x} \sin{\left(2 x \right)} d x}}} = {\color{red}{\left(2 \int{e^{- x} \sin{\left(2 x \right)} d x}\right)}}$$

Για το ολοκλήρωμα $$$\int{e^{- x} \sin{\left(2 x \right)} d x}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Έστω $$$\operatorname{u}=\sin{\left(2 x \right)}$$$ και $$$\operatorname{dv}=e^{- x} dx$$$.

Τότε $$$\operatorname{du}=\left(\sin{\left(2 x \right)}\right)^{\prime }dx=2 \cos{\left(2 x \right)} dx$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (τα βήματα φαίνονται »).

Το ολοκλήρωμα γίνεται

$$2 {\color{red}{\int{e^{- x} \sin{\left(2 x \right)} d x}}}=2 {\color{red}{\left(\sin{\left(2 x \right)} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 2 \cos{\left(2 x \right)} d x}\right)}}=2 {\color{red}{\left(- \int{\left(- 2 e^{- x} \cos{\left(2 x \right)}\right)d x} - e^{- x} \sin{\left(2 x \right)}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=-2$$$ και $$$f{\left(x \right)} = e^{- x} \cos{\left(2 x \right)}$$$:

$$- 2 {\color{red}{\int{\left(- 2 e^{- x} \cos{\left(2 x \right)}\right)d x}}} - 2 e^{- x} \sin{\left(2 x \right)} = - 2 {\color{red}{\left(- 2 \int{e^{- x} \cos{\left(2 x \right)} d x}\right)}} - 2 e^{- x} \sin{\left(2 x \right)}$$

Για το ολοκλήρωμα $$$\int{e^{- x} \cos{\left(2 x \right)} d x}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Έστω $$$\operatorname{u}=\cos{\left(2 x \right)}$$$ και $$$\operatorname{dv}=e^{- x} dx$$$.

Τότε $$$\operatorname{du}=\left(\cos{\left(2 x \right)}\right)^{\prime }dx=- 2 \sin{\left(2 x \right)} dx$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$ (τα βήματα φαίνονται »).

Επομένως,

$$4 {\color{red}{\int{e^{- x} \cos{\left(2 x \right)} d x}}} - 2 e^{- x} \sin{\left(2 x \right)}=4 {\color{red}{\left(\cos{\left(2 x \right)} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot \left(- 2 \sin{\left(2 x \right)}\right) d x}\right)}} - 2 e^{- x} \sin{\left(2 x \right)}=4 {\color{red}{\left(- \int{2 e^{- x} \sin{\left(2 x \right)} d x} - e^{- x} \cos{\left(2 x \right)}\right)}} - 2 e^{- x} \sin{\left(2 x \right)}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=2$$$ και $$$f{\left(x \right)} = e^{- x} \sin{\left(2 x \right)}$$$:

$$- 4 {\color{red}{\int{2 e^{- x} \sin{\left(2 x \right)} d x}}} - 2 e^{- x} \sin{\left(2 x \right)} - 4 e^{- x} \cos{\left(2 x \right)} = - 4 {\color{red}{\left(2 \int{e^{- x} \sin{\left(2 x \right)} d x}\right)}} - 2 e^{- x} \sin{\left(2 x \right)} - 4 e^{- x} \cos{\left(2 x \right)}$$

Φτάσαμε σε ένα ολοκλήρωμα που έχουμε ήδη δει.

Έτσι, καταλήξαμε στην ακόλουθη απλή εξίσωση ως προς το ολοκλήρωμα:

$$2 \int{e^{- x} \sin{\left(2 x \right)} d x} = - 8 \int{e^{- x} \sin{\left(2 x \right)} d x} - 2 e^{- x} \sin{\left(2 x \right)} - 4 e^{- x} \cos{\left(2 x \right)}$$

Λύνοντάς το, προκύπτει ότι

$$\int{e^{- x} \sin{\left(2 x \right)} d x} = \frac{\left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}$$

Επομένως,

$$2 {\color{red}{\int{e^{- x} \sin{\left(2 x \right)} d x}}} = 2 {\color{red}{\left(\frac{\left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}\right)}}$$

Επομένως,

$$\int{2 e^{- x} \sin{\left(2 x \right)} d x} = \frac{2 \left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{2 e^{- x} \sin{\left(2 x \right)} d x} = \frac{2 \left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}+C$$

Απάντηση

$$$\int 2 e^{- x} \sin{\left(2 x \right)}\, dx = \frac{2 \left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5} + C$$$A


Please try a new game Rotatly