$$$2 e^{- x} \sin{\left(2 x \right)}$$$ 的積分

此計算器將求出 $$$2 e^{- x} \sin{\left(2 x \right)}$$$ 的不定積分(原函數),並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int 2 e^{- x} \sin{\left(2 x \right)}\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$$$$f{\left(x \right)} = e^{- x} \sin{\left(2 x \right)}$$$

$${\color{red}{\int{2 e^{- x} \sin{\left(2 x \right)} d x}}} = {\color{red}{\left(2 \int{e^{- x} \sin{\left(2 x \right)} d x}\right)}}$$

對於積分 $$$\int{e^{- x} \sin{\left(2 x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\sin{\left(2 x \right)}$$$$$$\operatorname{dv}=e^{- x} dx$$$

$$$\operatorname{du}=\left(\sin{\left(2 x \right)}\right)^{\prime }dx=2 \cos{\left(2 x \right)} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$(步驟見 »)。

因此,

$$2 {\color{red}{\int{e^{- x} \sin{\left(2 x \right)} d x}}}=2 {\color{red}{\left(\sin{\left(2 x \right)} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 2 \cos{\left(2 x \right)} d x}\right)}}=2 {\color{red}{\left(- \int{\left(- 2 e^{- x} \cos{\left(2 x \right)}\right)d x} - e^{- x} \sin{\left(2 x \right)}\right)}}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=-2$$$$$$f{\left(x \right)} = e^{- x} \cos{\left(2 x \right)}$$$

$$- 2 {\color{red}{\int{\left(- 2 e^{- x} \cos{\left(2 x \right)}\right)d x}}} - 2 e^{- x} \sin{\left(2 x \right)} = - 2 {\color{red}{\left(- 2 \int{e^{- x} \cos{\left(2 x \right)} d x}\right)}} - 2 e^{- x} \sin{\left(2 x \right)}$$

對於積分 $$$\int{e^{- x} \cos{\left(2 x \right)} d x}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$

$$$\operatorname{u}=\cos{\left(2 x \right)}$$$$$$\operatorname{dv}=e^{- x} dx$$$

$$$\operatorname{du}=\left(\cos{\left(2 x \right)}\right)^{\prime }dx=- 2 \sin{\left(2 x \right)} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{- x} d x}=- e^{- x}$$$(步驟見 »)。

因此,

$$4 {\color{red}{\int{e^{- x} \cos{\left(2 x \right)} d x}}} - 2 e^{- x} \sin{\left(2 x \right)}=4 {\color{red}{\left(\cos{\left(2 x \right)} \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot \left(- 2 \sin{\left(2 x \right)}\right) d x}\right)}} - 2 e^{- x} \sin{\left(2 x \right)}=4 {\color{red}{\left(- \int{2 e^{- x} \sin{\left(2 x \right)} d x} - e^{- x} \cos{\left(2 x \right)}\right)}} - 2 e^{- x} \sin{\left(2 x \right)}$$

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=2$$$$$$f{\left(x \right)} = e^{- x} \sin{\left(2 x \right)}$$$

$$- 4 {\color{red}{\int{2 e^{- x} \sin{\left(2 x \right)} d x}}} - 2 e^{- x} \sin{\left(2 x \right)} - 4 e^{- x} \cos{\left(2 x \right)} = - 4 {\color{red}{\left(2 \int{e^{- x} \sin{\left(2 x \right)} d x}\right)}} - 2 e^{- x} \sin{\left(2 x \right)} - 4 e^{- x} \cos{\left(2 x \right)}$$

我們得到了先前見過的一個積分。

因此,我們得到關於該積分的如下簡單等式:

$$2 \int{e^{- x} \sin{\left(2 x \right)} d x} = - 8 \int{e^{- x} \sin{\left(2 x \right)} d x} - 2 e^{- x} \sin{\left(2 x \right)} - 4 e^{- x} \cos{\left(2 x \right)}$$

求解後,可得

$$\int{e^{- x} \sin{\left(2 x \right)} d x} = \frac{\left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}$$

所以,

$$2 {\color{red}{\int{e^{- x} \sin{\left(2 x \right)} d x}}} = 2 {\color{red}{\left(\frac{\left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}\right)}}$$

因此,

$$\int{2 e^{- x} \sin{\left(2 x \right)} d x} = \frac{2 \left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}$$

加上積分常數:

$$\int{2 e^{- x} \sin{\left(2 x \right)} d x} = \frac{2 \left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5}+C$$

答案

$$$\int 2 e^{- x} \sin{\left(2 x \right)}\, dx = \frac{2 \left(- \sin{\left(2 x \right)} - 2 \cos{\left(2 x \right)}\right) e^{- x}}{5} + C$$$A


Please try a new game Rotatly