$$$e^{t} \cos{\left(3 t \right)}$$$의 적분
사용자 입력
$$$\int e^{t} \cos{\left(3 t \right)}\, dt$$$을(를) 구하시오.
풀이
적분 $$$\int{e^{t} \cos{\left(3 t \right)} d t}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\cos{\left(3 t \right)}$$$와 $$$\operatorname{dv}=e^{t} dt$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\cos{\left(3 t \right)}\right)^{\prime }dt=- 3 \sin{\left(3 t \right)} dt$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{t} d t}=e^{t}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 됩니다.
$${\color{red}{\int{e^{t} \cos{\left(3 t \right)} d t}}}={\color{red}{\left(\cos{\left(3 t \right)} \cdot e^{t}-\int{e^{t} \cdot \left(- 3 \sin{\left(3 t \right)}\right) d t}\right)}}={\color{red}{\left(e^{t} \cos{\left(3 t \right)} - \int{\left(- 3 e^{t} \sin{\left(3 t \right)}\right)d t}\right)}}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=-3$$$와 $$$f{\left(t \right)} = e^{t} \sin{\left(3 t \right)}$$$에 적용하세요:
$$e^{t} \cos{\left(3 t \right)} - {\color{red}{\int{\left(- 3 e^{t} \sin{\left(3 t \right)}\right)d t}}} = e^{t} \cos{\left(3 t \right)} - {\color{red}{\left(- 3 \int{e^{t} \sin{\left(3 t \right)} d t}\right)}}$$
적분 $$$\int{e^{t} \sin{\left(3 t \right)} d t}$$$에 대해서는 부분적분법 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$을 사용하십시오.
$$$\operatorname{u}=\sin{\left(3 t \right)}$$$와 $$$\operatorname{dv}=e^{t} dt$$$라고 하자.
그러면 $$$\operatorname{du}=\left(\sin{\left(3 t \right)}\right)^{\prime }dt=3 \cos{\left(3 t \right)} dt$$$ (»에서 풀이 과정을 볼 수 있음) 및 $$$\operatorname{v}=\int{e^{t} d t}=e^{t}$$$ (»에서 풀이 과정을 볼 수 있음).
적분은 다음과 같이 다시 쓸 수 있습니다.
$$e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\int{e^{t} \sin{\left(3 t \right)} d t}}}=e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\left(\sin{\left(3 t \right)} \cdot e^{t}-\int{e^{t} \cdot 3 \cos{\left(3 t \right)} d t}\right)}}=e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\left(e^{t} \sin{\left(3 t \right)} - \int{3 e^{t} \cos{\left(3 t \right)} d t}\right)}}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=3$$$와 $$$f{\left(t \right)} = e^{t} \cos{\left(3 t \right)}$$$에 적용하세요:
$$3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 3 {\color{red}{\int{3 e^{t} \cos{\left(3 t \right)} d t}}} = 3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 3 {\color{red}{\left(3 \int{e^{t} \cos{\left(3 t \right)} d t}\right)}}$$
우리는 이미 보았던 적분에 도달했습니다.
따라서 적분에 관한 다음과 같은 간단한 등식을 얻었습니다:
$$\int{e^{t} \cos{\left(3 t \right)} d t} = 3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 9 \int{e^{t} \cos{\left(3 t \right)} d t}$$
이를 풀면, 다음을 얻는다
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}$$
따라서,
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}$$
적분 상수를 추가하세요:
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}+C$$
정답
$$$\int e^{t} \cos{\left(3 t \right)}\, dt = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10} + C$$$A