$$$e^{t} \cos{\left(3 t \right)}$$$ 的积分
您的输入
求$$$\int e^{t} \cos{\left(3 t \right)}\, dt$$$。
解答
对于积分$$$\int{e^{t} \cos{\left(3 t \right)} d t}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\cos{\left(3 t \right)}$$$ 和 $$$\operatorname{dv}=e^{t} dt$$$。
则 $$$\operatorname{du}=\left(\cos{\left(3 t \right)}\right)^{\prime }dt=- 3 \sin{\left(3 t \right)} dt$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{t} d t}=e^{t}$$$ (步骤见 »)。
因此,
$${\color{red}{\int{e^{t} \cos{\left(3 t \right)} d t}}}={\color{red}{\left(\cos{\left(3 t \right)} \cdot e^{t}-\int{e^{t} \cdot \left(- 3 \sin{\left(3 t \right)}\right) d t}\right)}}={\color{red}{\left(e^{t} \cos{\left(3 t \right)} - \int{\left(- 3 e^{t} \sin{\left(3 t \right)}\right)d t}\right)}}$$
对 $$$c=-3$$$ 和 $$$f{\left(t \right)} = e^{t} \sin{\left(3 t \right)}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$$e^{t} \cos{\left(3 t \right)} - {\color{red}{\int{\left(- 3 e^{t} \sin{\left(3 t \right)}\right)d t}}} = e^{t} \cos{\left(3 t \right)} - {\color{red}{\left(- 3 \int{e^{t} \sin{\left(3 t \right)} d t}\right)}}$$
对于积分$$$\int{e^{t} \sin{\left(3 t \right)} d t}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\sin{\left(3 t \right)}$$$ 和 $$$\operatorname{dv}=e^{t} dt$$$。
则 $$$\operatorname{du}=\left(\sin{\left(3 t \right)}\right)^{\prime }dt=3 \cos{\left(3 t \right)} dt$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{t} d t}=e^{t}$$$ (步骤见 »)。
因此,
$$e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\int{e^{t} \sin{\left(3 t \right)} d t}}}=e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\left(\sin{\left(3 t \right)} \cdot e^{t}-\int{e^{t} \cdot 3 \cos{\left(3 t \right)} d t}\right)}}=e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\left(e^{t} \sin{\left(3 t \right)} - \int{3 e^{t} \cos{\left(3 t \right)} d t}\right)}}$$
对 $$$c=3$$$ 和 $$$f{\left(t \right)} = e^{t} \cos{\left(3 t \right)}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$:
$$3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 3 {\color{red}{\int{3 e^{t} \cos{\left(3 t \right)} d t}}} = 3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 3 {\color{red}{\left(3 \int{e^{t} \cos{\left(3 t \right)} d t}\right)}}$$
我们得到了一个之前见过的积分。
因此,我们得到了关于该积分的如下简单等式:
$$\int{e^{t} \cos{\left(3 t \right)} d t} = 3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 9 \int{e^{t} \cos{\left(3 t \right)} d t}$$
解得
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}$$
因此,
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}$$
加上积分常数:
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}+C$$
答案
$$$\int e^{t} \cos{\left(3 t \right)}\, dt = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10} + C$$$A