$$$e^{t} \cos{\left(3 t \right)}$$$ 的積分
您的輸入
求$$$\int e^{t} \cos{\left(3 t \right)}\, dt$$$。
解答
對於積分 $$$\int{e^{t} \cos{\left(3 t \right)} d t}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\cos{\left(3 t \right)}$$$ 與 $$$\operatorname{dv}=e^{t} dt$$$。
則 $$$\operatorname{du}=\left(\cos{\left(3 t \right)}\right)^{\prime }dt=- 3 \sin{\left(3 t \right)} dt$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{t} d t}=e^{t}$$$(步驟見 »)。
所以,
$${\color{red}{\int{e^{t} \cos{\left(3 t \right)} d t}}}={\color{red}{\left(\cos{\left(3 t \right)} \cdot e^{t}-\int{e^{t} \cdot \left(- 3 \sin{\left(3 t \right)}\right) d t}\right)}}={\color{red}{\left(e^{t} \cos{\left(3 t \right)} - \int{\left(- 3 e^{t} \sin{\left(3 t \right)}\right)d t}\right)}}$$
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=-3$$$ 與 $$$f{\left(t \right)} = e^{t} \sin{\left(3 t \right)}$$$:
$$e^{t} \cos{\left(3 t \right)} - {\color{red}{\int{\left(- 3 e^{t} \sin{\left(3 t \right)}\right)d t}}} = e^{t} \cos{\left(3 t \right)} - {\color{red}{\left(- 3 \int{e^{t} \sin{\left(3 t \right)} d t}\right)}}$$
對於積分 $$$\int{e^{t} \sin{\left(3 t \right)} d t}$$$,使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\sin{\left(3 t \right)}$$$ 與 $$$\operatorname{dv}=e^{t} dt$$$。
則 $$$\operatorname{du}=\left(\sin{\left(3 t \right)}\right)^{\prime }dt=3 \cos{\left(3 t \right)} dt$$$(步驟見 »),且 $$$\operatorname{v}=\int{e^{t} d t}=e^{t}$$$(步驟見 »)。
該積分可改寫為
$$e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\int{e^{t} \sin{\left(3 t \right)} d t}}}=e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\left(\sin{\left(3 t \right)} \cdot e^{t}-\int{e^{t} \cdot 3 \cos{\left(3 t \right)} d t}\right)}}=e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\left(e^{t} \sin{\left(3 t \right)} - \int{3 e^{t} \cos{\left(3 t \right)} d t}\right)}}$$
套用常數倍法則 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$,使用 $$$c=3$$$ 與 $$$f{\left(t \right)} = e^{t} \cos{\left(3 t \right)}$$$:
$$3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 3 {\color{red}{\int{3 e^{t} \cos{\left(3 t \right)} d t}}} = 3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 3 {\color{red}{\left(3 \int{e^{t} \cos{\left(3 t \right)} d t}\right)}}$$
我們得到了先前見過的一個積分。
因此,我們得到關於該積分的如下簡單等式:
$$\int{e^{t} \cos{\left(3 t \right)} d t} = 3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 9 \int{e^{t} \cos{\left(3 t \right)} d t}$$
求解後,可得
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}$$
因此,
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}$$
加上積分常數:
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}+C$$
答案
$$$\int e^{t} \cos{\left(3 t \right)}\, dt = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10} + C$$$A