Integralen av $$$e^{t} \cos{\left(3 t \right)}$$$
Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler
Din inmatning
Bestäm $$$\int e^{t} \cos{\left(3 t \right)}\, dt$$$.
Lösning
För integralen $$$\int{e^{t} \cos{\left(3 t \right)} d t}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Låt $$$\operatorname{u}=\cos{\left(3 t \right)}$$$ och $$$\operatorname{dv}=e^{t} dt$$$.
Då gäller $$$\operatorname{du}=\left(\cos{\left(3 t \right)}\right)^{\prime }dt=- 3 \sin{\left(3 t \right)} dt$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{t} d t}=e^{t}$$$ (stegen kan ses »).
Integralen kan omskrivas som
$${\color{red}{\int{e^{t} \cos{\left(3 t \right)} d t}}}={\color{red}{\left(\cos{\left(3 t \right)} \cdot e^{t}-\int{e^{t} \cdot \left(- 3 \sin{\left(3 t \right)}\right) d t}\right)}}={\color{red}{\left(e^{t} \cos{\left(3 t \right)} - \int{\left(- 3 e^{t} \sin{\left(3 t \right)}\right)d t}\right)}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=-3$$$ och $$$f{\left(t \right)} = e^{t} \sin{\left(3 t \right)}$$$:
$$e^{t} \cos{\left(3 t \right)} - {\color{red}{\int{\left(- 3 e^{t} \sin{\left(3 t \right)}\right)d t}}} = e^{t} \cos{\left(3 t \right)} - {\color{red}{\left(- 3 \int{e^{t} \sin{\left(3 t \right)} d t}\right)}}$$
För integralen $$$\int{e^{t} \sin{\left(3 t \right)} d t}$$$, använd partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Låt $$$\operatorname{u}=\sin{\left(3 t \right)}$$$ och $$$\operatorname{dv}=e^{t} dt$$$.
Då gäller $$$\operatorname{du}=\left(\sin{\left(3 t \right)}\right)^{\prime }dt=3 \cos{\left(3 t \right)} dt$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{e^{t} d t}=e^{t}$$$ (stegen kan ses »).
Alltså,
$$e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\int{e^{t} \sin{\left(3 t \right)} d t}}}=e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\left(\sin{\left(3 t \right)} \cdot e^{t}-\int{e^{t} \cdot 3 \cos{\left(3 t \right)} d t}\right)}}=e^{t} \cos{\left(3 t \right)} + 3 {\color{red}{\left(e^{t} \sin{\left(3 t \right)} - \int{3 e^{t} \cos{\left(3 t \right)} d t}\right)}}$$
Tillämpa konstantfaktorregeln $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ med $$$c=3$$$ och $$$f{\left(t \right)} = e^{t} \cos{\left(3 t \right)}$$$:
$$3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 3 {\color{red}{\int{3 e^{t} \cos{\left(3 t \right)} d t}}} = 3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 3 {\color{red}{\left(3 \int{e^{t} \cos{\left(3 t \right)} d t}\right)}}$$
Vi har kommit till en integral som vi redan har sett.
Således har vi erhållit följande enkla ekvation med avseende på integralen:
$$\int{e^{t} \cos{\left(3 t \right)} d t} = 3 e^{t} \sin{\left(3 t \right)} + e^{t} \cos{\left(3 t \right)} - 9 \int{e^{t} \cos{\left(3 t \right)} d t}$$
Löser vi den får vi att
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}$$
Alltså,
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}$$
Lägg till integrationskonstanten:
$$\int{e^{t} \cos{\left(3 t \right)} d t} = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10}+C$$
Svar
$$$\int e^{t} \cos{\left(3 t \right)}\, dt = \frac{\left(3 \sin{\left(3 t \right)} + \cos{\left(3 t \right)}\right) e^{t}}{10} + C$$$A