$$$\frac{2 t - 7}{t - 8}$$$의 적분
사용자 입력
$$$\int \frac{2 t - 7}{t - 8}\, dt$$$을(를) 구하시오.
풀이
피적분함수의 분자를 $$$2 t - 7=2\left(t - 8\right)+9$$$로 다시 쓰고 분수를 분해하세요:
$${\color{red}{\int{\frac{2 t - 7}{t - 8} d t}}} = {\color{red}{\int{\left(2 + \frac{9}{t - 8}\right)d t}}}$$
각 항별로 적분하십시오:
$${\color{red}{\int{\left(2 + \frac{9}{t - 8}\right)d t}}} = {\color{red}{\left(\int{2 d t} + \int{\frac{9}{t - 8} d t}\right)}}$$
상수 법칙 $$$\int c\, dt = c t$$$을 $$$c=2$$$에 적용하십시오:
$$\int{\frac{9}{t - 8} d t} + {\color{red}{\int{2 d t}}} = \int{\frac{9}{t - 8} d t} + {\color{red}{\left(2 t\right)}}$$
상수배 법칙 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$을 $$$c=9$$$와 $$$f{\left(t \right)} = \frac{1}{t - 8}$$$에 적용하세요:
$$2 t + {\color{red}{\int{\frac{9}{t - 8} d t}}} = 2 t + {\color{red}{\left(9 \int{\frac{1}{t - 8} d t}\right)}}$$
$$$u=t - 8$$$라 하자.
그러면 $$$du=\left(t - 8\right)^{\prime }dt = 1 dt$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$dt = du$$$임을 얻습니다.
적분은 다음과 같이 됩니다.
$$2 t + 9 {\color{red}{\int{\frac{1}{t - 8} d t}}} = 2 t + 9 {\color{red}{\int{\frac{1}{u} d u}}}$$
$$$\frac{1}{u}$$$의 적분은 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 t + 9 {\color{red}{\int{\frac{1}{u} d u}}} = 2 t + 9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
다음 $$$u=t - 8$$$을 기억하라:
$$2 t + 9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 t + 9 \ln{\left(\left|{{\color{red}{\left(t - 8\right)}}}\right| \right)}$$
따라서,
$$\int{\frac{2 t - 7}{t - 8} d t} = 2 t + 9 \ln{\left(\left|{t - 8}\right| \right)}$$
적분 상수를 추가하세요:
$$\int{\frac{2 t - 7}{t - 8} d t} = 2 t + 9 \ln{\left(\left|{t - 8}\right| \right)}+C$$
정답
$$$\int \frac{2 t - 7}{t - 8}\, dt = \left(2 t + 9 \ln\left(\left|{t - 8}\right|\right)\right) + C$$$A