Integral of $$$\frac{2 t - 7}{t - 8}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \frac{2 t - 7}{t - 8}\, dt$$$.
Solution
Rewrite the numerator of the integrand as $$$2 t - 7=2\left(t - 8\right)+9$$$ and split the fraction:
$${\color{red}{\int{\frac{2 t - 7}{t - 8} d t}}} = {\color{red}{\int{\left(2 + \frac{9}{t - 8}\right)d t}}}$$
Integrate term by term:
$${\color{red}{\int{\left(2 + \frac{9}{t - 8}\right)d t}}} = {\color{red}{\left(\int{2 d t} + \int{\frac{9}{t - 8} d t}\right)}}$$
Apply the constant rule $$$\int c\, dt = c t$$$ with $$$c=2$$$:
$$\int{\frac{9}{t - 8} d t} + {\color{red}{\int{2 d t}}} = \int{\frac{9}{t - 8} d t} + {\color{red}{\left(2 t\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ with $$$c=9$$$ and $$$f{\left(t \right)} = \frac{1}{t - 8}$$$:
$$2 t + {\color{red}{\int{\frac{9}{t - 8} d t}}} = 2 t + {\color{red}{\left(9 \int{\frac{1}{t - 8} d t}\right)}}$$
Let $$$u=t - 8$$$.
Then $$$du=\left(t - 8\right)^{\prime }dt = 1 dt$$$ (steps can be seen »), and we have that $$$dt = du$$$.
Thus,
$$2 t + 9 {\color{red}{\int{\frac{1}{t - 8} d t}}} = 2 t + 9 {\color{red}{\int{\frac{1}{u} d u}}}$$
The integral of $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$2 t + 9 {\color{red}{\int{\frac{1}{u} d u}}} = 2 t + 9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Recall that $$$u=t - 8$$$:
$$2 t + 9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 t + 9 \ln{\left(\left|{{\color{red}{\left(t - 8\right)}}}\right| \right)}$$
Therefore,
$$\int{\frac{2 t - 7}{t - 8} d t} = 2 t + 9 \ln{\left(\left|{t - 8}\right| \right)}$$
Add the constant of integration:
$$\int{\frac{2 t - 7}{t - 8} d t} = 2 t + 9 \ln{\left(\left|{t - 8}\right| \right)}+C$$
Answer
$$$\int \frac{2 t - 7}{t - 8}\, dt = \left(2 t + 9 \ln\left(\left|{t - 8}\right|\right)\right) + C$$$A