$$$\frac{2 t - 7}{t - 8}$$$ 的积分

该计算器将求出$$$\frac{2 t - 7}{t - 8}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \frac{2 t - 7}{t - 8}\, dt$$$

解答

将被积函数的分子改写为 $$$2 t - 7=2\left(t - 8\right)+9$$$,并将分式拆分:

$${\color{red}{\int{\frac{2 t - 7}{t - 8} d t}}} = {\color{red}{\int{\left(2 + \frac{9}{t - 8}\right)d t}}}$$

逐项积分:

$${\color{red}{\int{\left(2 + \frac{9}{t - 8}\right)d t}}} = {\color{red}{\left(\int{2 d t} + \int{\frac{9}{t - 8} d t}\right)}}$$

应用常数法则 $$$\int c\, dt = c t$$$,使用 $$$c=2$$$

$$\int{\frac{9}{t - 8} d t} + {\color{red}{\int{2 d t}}} = \int{\frac{9}{t - 8} d t} + {\color{red}{\left(2 t\right)}}$$

$$$c=9$$$$$$f{\left(t \right)} = \frac{1}{t - 8}$$$ 应用常数倍法则 $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$

$$2 t + {\color{red}{\int{\frac{9}{t - 8} d t}}} = 2 t + {\color{red}{\left(9 \int{\frac{1}{t - 8} d t}\right)}}$$

$$$u=t - 8$$$

$$$du=\left(t - 8\right)^{\prime }dt = 1 dt$$$ (步骤见»),并有$$$dt = du$$$

该积分可以改写为

$$2 t + 9 {\color{red}{\int{\frac{1}{t - 8} d t}}} = 2 t + 9 {\color{red}{\int{\frac{1}{u} d u}}}$$

$$$\frac{1}{u}$$$ 的积分为 $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$2 t + 9 {\color{red}{\int{\frac{1}{u} d u}}} = 2 t + 9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

回忆一下 $$$u=t - 8$$$:

$$2 t + 9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 t + 9 \ln{\left(\left|{{\color{red}{\left(t - 8\right)}}}\right| \right)}$$

因此,

$$\int{\frac{2 t - 7}{t - 8} d t} = 2 t + 9 \ln{\left(\left|{t - 8}\right| \right)}$$

加上积分常数:

$$\int{\frac{2 t - 7}{t - 8} d t} = 2 t + 9 \ln{\left(\left|{t - 8}\right| \right)}+C$$

答案

$$$\int \frac{2 t - 7}{t - 8}\, dt = \left(2 t + 9 \ln\left(\left|{t - 8}\right|\right)\right) + C$$$A


Please try a new game Rotatly