Ολοκλήρωμα του $$$\frac{2 t - 7}{t - 8}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{2 t - 7}{t - 8}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{2 t - 7}{t - 8}\, dt$$$.

Λύση

Ξαναγράψτε τον αριθμητή του ολοκληρωτέου ως $$$2 t - 7=2\left(t - 8\right)+9$$$ και διασπάστε το κλάσμα:

$${\color{red}{\int{\frac{2 t - 7}{t - 8} d t}}} = {\color{red}{\int{\left(2 + \frac{9}{t - 8}\right)d t}}}$$

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(2 + \frac{9}{t - 8}\right)d t}}} = {\color{red}{\left(\int{2 d t} + \int{\frac{9}{t - 8} d t}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dt = c t$$$ με $$$c=2$$$:

$$\int{\frac{9}{t - 8} d t} + {\color{red}{\int{2 d t}}} = \int{\frac{9}{t - 8} d t} + {\color{red}{\left(2 t\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=9$$$ και $$$f{\left(t \right)} = \frac{1}{t - 8}$$$:

$$2 t + {\color{red}{\int{\frac{9}{t - 8} d t}}} = 2 t + {\color{red}{\left(9 \int{\frac{1}{t - 8} d t}\right)}}$$

Έστω $$$u=t - 8$$$.

Τότε $$$du=\left(t - 8\right)^{\prime }dt = 1 dt$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dt = du$$$.

Το ολοκλήρωμα γίνεται

$$2 t + 9 {\color{red}{\int{\frac{1}{t - 8} d t}}} = 2 t + 9 {\color{red}{\int{\frac{1}{u} d u}}}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$2 t + 9 {\color{red}{\int{\frac{1}{u} d u}}} = 2 t + 9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Θυμηθείτε ότι $$$u=t - 8$$$:

$$2 t + 9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 t + 9 \ln{\left(\left|{{\color{red}{\left(t - 8\right)}}}\right| \right)}$$

Επομένως,

$$\int{\frac{2 t - 7}{t - 8} d t} = 2 t + 9 \ln{\left(\left|{t - 8}\right| \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{2 t - 7}{t - 8} d t} = 2 t + 9 \ln{\left(\left|{t - 8}\right| \right)}+C$$

Απάντηση

$$$\int \frac{2 t - 7}{t - 8}\, dt = \left(2 t + 9 \ln\left(\left|{t - 8}\right|\right)\right) + C$$$A


Please try a new game Rotatly