$$$e^{\sin{\left(x \right)}}$$$의 도함수
사용자 입력
$$$\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right)$$$을(를) 구하시오.
풀이
함수 $$$e^{\sin{\left(x \right)}}$$$는 두 함수 $$$f{\left(u \right)} = e^{u}$$$와 $$$g{\left(x \right)} = \sin{\left(x \right)}$$$의 합성함수 $$$f{\left(g{\left(x \right)} \right)}$$$이다.
연쇄법칙 $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$을(를) 적용하십시오:
$${\color{red}\left(\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$지수함수의 도함수는 $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$역치환:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{{\color{red}\left(\sin{\left(x \right)}\right)}} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$사인 함수의 도함수는 $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$e^{\sin{\left(x \right)}} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = e^{\sin{\left(x \right)}} {\color{red}\left(\cos{\left(x \right)}\right)}$$따라서, $$$\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right) = e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$.
정답
$$$\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right) = e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$A