Derivata di $$$e^{\sin{\left(x \right)}}$$$
Calcolatrici correlate: Calcolatrice di derivazione logaritmica, Calcolatore di derivazione implicita con passaggi
Il tuo input
Trova $$$\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right)$$$.
Soluzione
La funzione $$$e^{\sin{\left(x \right)}}$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = e^{u}$$$ e $$$g{\left(x \right)} = \sin{\left(x \right)}$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$La derivata della funzione esponenziale è $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$Torna alla variabile originale:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{{\color{red}\left(\sin{\left(x \right)}\right)}} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$La derivata del seno è $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$e^{\sin{\left(x \right)}} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = e^{\sin{\left(x \right)}} {\color{red}\left(\cos{\left(x \right)}\right)}$$Quindi, $$$\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right) = e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$.
Risposta
$$$\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right) = e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$A