Turunan dari $$$e^{\sin{\left(x \right)}}$$$

Kalkulator akan menentukan turunan dari $$$e^{\sin{\left(x \right)}}$$$, dengan langkah-langkah yang ditampilkan.

Kalkulator terkait: Kalkulator Diferensiasi Logaritmik, Kalkulator Diferensiasi Implisit dengan Langkah-langkah

Biarkan kosong untuk deteksi otomatis.
Biarkan kosong jika Anda tidak memerlukan turunan pada titik tertentu.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right)$$$.

Solusi

Fungsi $$$e^{\sin{\left(x \right)}}$$$ merupakan komposisi $$$f{\left(g{\left(x \right)} \right)}$$$ dari dua fungsi $$$f{\left(u \right)} = e^{u}$$$ dan $$$g{\left(x \right)} = \sin{\left(x \right)}$$$.

Terapkan aturan rantai $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

Turunan dari fungsi eksponensial adalah $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

Kembalikan ke variabel semula:

$$e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{{\color{red}\left(\sin{\left(x \right)}\right)}} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

Turunan fungsi sinus adalah $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$e^{\sin{\left(x \right)}} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = e^{\sin{\left(x \right)}} {\color{red}\left(\cos{\left(x \right)}\right)}$$

Dengan demikian, $$$\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right) = e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$.

Jawaban

$$$\frac{d}{dx} \left(e^{\sin{\left(x \right)}}\right) = e^{\sin{\left(x \right)}} \cos{\left(x \right)}$$$A


Please try a new game Rotatly