$$$a^{4^{x}}$$$$$$x$$$ に関する積分

この計算機は、$$$x$$$ に関して $$$a^{4^{x}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int a^{4^{x}}\, dx$$$ を求めよ。

解答

$$$u=4^{x}$$$ とする。

すると $$$du=\left(4^{x}\right)^{\prime }dx = 4^{x} \ln{\left(4 \right)} dx$$$(手順は»で確認できます)、$$$4^{x} dx = \frac{du}{\ln{\left(4 \right)}}$$$ となります。

この積分は次のように書き換えられる

$${\color{red}{\int{a^{4^{x}} d x}}} = {\color{red}{\int{\frac{a^{u}}{2 u \ln{\left(2 \right)}} d u}}}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2 \ln{\left(2 \right)}}$$$$$$f{\left(u \right)} = \frac{a^{u}}{u}$$$ に対して適用する:

$${\color{red}{\int{\frac{a^{u}}{2 u \ln{\left(2 \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{a^{u}}{u} d u}}{2 \ln{\left(2 \right)}}\right)}}$$

基数を変更:

$$\frac{{\color{red}{\int{\frac{a^{u}}{u} d u}}}}{2 \ln{\left(2 \right)}} = \frac{{\color{red}{\int{\frac{e^{u \ln{\left(a \right)}}}{u} d u}}}}{2 \ln{\left(2 \right)}}$$

$$$v=u \ln{\left(a \right)}$$$ とする。

すると $$$dv=\left(u \ln{\left(a \right)}\right)^{\prime }du = \ln{\left(a \right)} du$$$(手順は»で確認できます)、$$$du = \frac{dv}{\ln{\left(a \right)}}$$$ となります。

したがって、

$$\frac{{\color{red}{\int{\frac{e^{u \ln{\left(a \right)}}}{u} d u}}}}{2 \ln{\left(2 \right)}} = \frac{{\color{red}{\int{\frac{e^{v}}{v} d v}}}}{2 \ln{\left(2 \right)}}$$

この積分(指数積分)には閉形式はありません:

$$\frac{{\color{red}{\int{\frac{e^{v}}{v} d v}}}}{2 \ln{\left(2 \right)}} = \frac{{\color{red}{\operatorname{Ei}{\left(v \right)}}}}{2 \ln{\left(2 \right)}}$$

次のことを思い出してください $$$v=u \ln{\left(a \right)}$$$:

$$\frac{\operatorname{Ei}{\left({\color{red}{v}} \right)}}{2 \ln{\left(2 \right)}} = \frac{\operatorname{Ei}{\left({\color{red}{u \ln{\left(a \right)}}} \right)}}{2 \ln{\left(2 \right)}}$$

次のことを思い出してください $$$u=4^{x}$$$:

$$\frac{\operatorname{Ei}{\left(\ln{\left(a \right)} {\color{red}{u}} \right)}}{2 \ln{\left(2 \right)}} = \frac{\operatorname{Ei}{\left(\ln{\left(a \right)} {\color{red}{4^{x}}} \right)}}{2 \ln{\left(2 \right)}}$$

したがって、

$$\int{a^{4^{x}} d x} = \frac{\operatorname{Ei}{\left(4^{x} \ln{\left(a \right)} \right)}}{2 \ln{\left(2 \right)}}$$

積分定数を加える:

$$\int{a^{4^{x}} d x} = \frac{\operatorname{Ei}{\left(4^{x} \ln{\left(a \right)} \right)}}{2 \ln{\left(2 \right)}}+C$$

解答

$$$\int a^{4^{x}}\, dx = \frac{\operatorname{Ei}{\left(4^{x} \ln\left(a\right) \right)}}{2 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly