Integral de $$$a^{4^{x}}$$$ con respecto a $$$x$$$

La calculadora encontrará la integral/primitiva de $$$a^{4^{x}}$$$ con respecto a $$$x$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int a^{4^{x}}\, dx$$$.

Solución

Sea $$$u=4^{x}$$$.

Entonces $$$du=\left(4^{x}\right)^{\prime }dx = 4^{x} \ln{\left(4 \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$4^{x} dx = \frac{du}{\ln{\left(4 \right)}}$$$.

Por lo tanto,

$${\color{red}{\int{a^{4^{x}} d x}}} = {\color{red}{\int{\frac{a^{u}}{2 u \ln{\left(2 \right)}} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2 \ln{\left(2 \right)}}$$$ y $$$f{\left(u \right)} = \frac{a^{u}}{u}$$$:

$${\color{red}{\int{\frac{a^{u}}{2 u \ln{\left(2 \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{a^{u}}{u} d u}}{2 \ln{\left(2 \right)}}\right)}}$$

Cambiar la base:

$$\frac{{\color{red}{\int{\frac{a^{u}}{u} d u}}}}{2 \ln{\left(2 \right)}} = \frac{{\color{red}{\int{\frac{e^{u \ln{\left(a \right)}}}{u} d u}}}}{2 \ln{\left(2 \right)}}$$

Sea $$$v=u \ln{\left(a \right)}$$$.

Entonces $$$dv=\left(u \ln{\left(a \right)}\right)^{\prime }du = \ln{\left(a \right)} du$$$ (los pasos pueden verse »), y obtenemos que $$$du = \frac{dv}{\ln{\left(a \right)}}$$$.

Entonces,

$$\frac{{\color{red}{\int{\frac{e^{u \ln{\left(a \right)}}}{u} d u}}}}{2 \ln{\left(2 \right)}} = \frac{{\color{red}{\int{\frac{e^{v}}{v} d v}}}}{2 \ln{\left(2 \right)}}$$

Esta integral (Integral exponencial) no tiene una forma cerrada:

$$\frac{{\color{red}{\int{\frac{e^{v}}{v} d v}}}}{2 \ln{\left(2 \right)}} = \frac{{\color{red}{\operatorname{Ei}{\left(v \right)}}}}{2 \ln{\left(2 \right)}}$$

Recordemos que $$$v=u \ln{\left(a \right)}$$$:

$$\frac{\operatorname{Ei}{\left({\color{red}{v}} \right)}}{2 \ln{\left(2 \right)}} = \frac{\operatorname{Ei}{\left({\color{red}{u \ln{\left(a \right)}}} \right)}}{2 \ln{\left(2 \right)}}$$

Recordemos que $$$u=4^{x}$$$:

$$\frac{\operatorname{Ei}{\left(\ln{\left(a \right)} {\color{red}{u}} \right)}}{2 \ln{\left(2 \right)}} = \frac{\operatorname{Ei}{\left(\ln{\left(a \right)} {\color{red}{4^{x}}} \right)}}{2 \ln{\left(2 \right)}}$$

Por lo tanto,

$$\int{a^{4^{x}} d x} = \frac{\operatorname{Ei}{\left(4^{x} \ln{\left(a \right)} \right)}}{2 \ln{\left(2 \right)}}$$

Añade la constante de integración:

$$\int{a^{4^{x}} d x} = \frac{\operatorname{Ei}{\left(4^{x} \ln{\left(a \right)} \right)}}{2 \ln{\left(2 \right)}}+C$$

Respuesta

$$$\int a^{4^{x}}\, dx = \frac{\operatorname{Ei}{\left(4^{x} \ln\left(a\right) \right)}}{2 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly