Integralen av $$$a^{4^{x}}$$$ med avseende på $$$x$$$

Kalkylatorn beräknar integralen/primitivfunktionen av $$$a^{4^{x}}$$$ med avseende på $$$x$$$, med stegvis lösning.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int a^{4^{x}}\, dx$$$.

Lösning

Låt $$$u=4^{x}$$$ vara.

$$$du=\left(4^{x}\right)^{\prime }dx = 4^{x} \ln{\left(4 \right)} dx$$$ (stegen kan ses »), och vi har att $$$4^{x} dx = \frac{du}{\ln{\left(4 \right)}}$$$.

Alltså,

$${\color{red}{\int{a^{4^{x}} d x}}} = {\color{red}{\int{\frac{a^{u}}{2 u \ln{\left(2 \right)}} d u}}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ med $$$c=\frac{1}{2 \ln{\left(2 \right)}}$$$ och $$$f{\left(u \right)} = \frac{a^{u}}{u}$$$:

$${\color{red}{\int{\frac{a^{u}}{2 u \ln{\left(2 \right)}} d u}}} = {\color{red}{\left(\frac{\int{\frac{a^{u}}{u} d u}}{2 \ln{\left(2 \right)}}\right)}}$$

Byt bas:

$$\frac{{\color{red}{\int{\frac{a^{u}}{u} d u}}}}{2 \ln{\left(2 \right)}} = \frac{{\color{red}{\int{\frac{e^{u \ln{\left(a \right)}}}{u} d u}}}}{2 \ln{\left(2 \right)}}$$

Låt $$$v=u \ln{\left(a \right)}$$$ vara.

$$$dv=\left(u \ln{\left(a \right)}\right)^{\prime }du = \ln{\left(a \right)} du$$$ (stegen kan ses »), och vi har att $$$du = \frac{dv}{\ln{\left(a \right)}}$$$.

Alltså,

$$\frac{{\color{red}{\int{\frac{e^{u \ln{\left(a \right)}}}{u} d u}}}}{2 \ln{\left(2 \right)}} = \frac{{\color{red}{\int{\frac{e^{v}}{v} d v}}}}{2 \ln{\left(2 \right)}}$$

Denna integral (Exponentialintegralen) har ingen sluten form:

$$\frac{{\color{red}{\int{\frac{e^{v}}{v} d v}}}}{2 \ln{\left(2 \right)}} = \frac{{\color{red}{\operatorname{Ei}{\left(v \right)}}}}{2 \ln{\left(2 \right)}}$$

Kom ihåg att $$$v=u \ln{\left(a \right)}$$$:

$$\frac{\operatorname{Ei}{\left({\color{red}{v}} \right)}}{2 \ln{\left(2 \right)}} = \frac{\operatorname{Ei}{\left({\color{red}{u \ln{\left(a \right)}}} \right)}}{2 \ln{\left(2 \right)}}$$

Kom ihåg att $$$u=4^{x}$$$:

$$\frac{\operatorname{Ei}{\left(\ln{\left(a \right)} {\color{red}{u}} \right)}}{2 \ln{\left(2 \right)}} = \frac{\operatorname{Ei}{\left(\ln{\left(a \right)} {\color{red}{4^{x}}} \right)}}{2 \ln{\left(2 \right)}}$$

Alltså,

$$\int{a^{4^{x}} d x} = \frac{\operatorname{Ei}{\left(4^{x} \ln{\left(a \right)} \right)}}{2 \ln{\left(2 \right)}}$$

Lägg till integrationskonstanten:

$$\int{a^{4^{x}} d x} = \frac{\operatorname{Ei}{\left(4^{x} \ln{\left(a \right)} \right)}}{2 \ln{\left(2 \right)}}+C$$

Svar

$$$\int a^{4^{x}}\, dx = \frac{\operatorname{Ei}{\left(4^{x} \ln\left(a\right) \right)}}{2 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly