極限計算機

極限を段階的に計算

この無料の計算機は、手順を示しながら、指定された点(無限大を含む)における与えられた関数の極限(両側または片側、左極限および右極限を含む)を求めます。

極限(不定形を含む)を扱うために、さまざまな手法を用います:極限法則、式の書き換え・簡単化、ロピタルの定理、分母の有理化、自然対数を取る、など。

Enter a function:

Choose a variable:

Find the limit at:

If you need `oo`, type inf.

Choose a direction:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find $$$\lim_{x \to \infty} \frac{e^{x}}{x^{6}}$$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$${\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x^{6}}}} = {\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{6}\right)}}}$$

For steps, see derivative calculator.

$${\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{6}\right)}}} = {\color{red}{\lim_{x \to \infty} \frac{e^{x}}{6 x^{5}}}}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=\frac{1}{6}$$$ and $$$f{\left(x \right)} = \frac{e^{x}}{x^{5}}$$$:

$${\color{red}{\lim_{x \to \infty} \frac{e^{x}}{6 x^{5}}}} = {\color{red}{\left(\frac{\lim_{x \to \infty} \frac{e^{x}}{x^{5}}}{6}\right)}}$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x^{5}}}}}{6} = \frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{5}\right)}}}}{6}$$

For steps, see derivative calculator.

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{5}\right)}}}}{6} = \frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{5 x^{4}}}}}{6}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=\frac{1}{5}$$$ and $$$f{\left(x \right)} = \frac{e^{x}}{x^{4}}$$$:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{5 x^{4}}}}}{6} = \frac{{\color{red}{\left(\frac{\lim_{x \to \infty} \frac{e^{x}}{x^{4}}}{5}\right)}}}{6}$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x^{4}}}}}{30} = \frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{4}\right)}}}}{30}$$

For steps, see derivative calculator.

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{4}\right)}}}}{30} = \frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{4 x^{3}}}}}{30}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=\frac{1}{4}$$$ and $$$f{\left(x \right)} = \frac{e^{x}}{x^{3}}$$$:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{4 x^{3}}}}}{30} = \frac{{\color{red}{\left(\frac{\lim_{x \to \infty} \frac{e^{x}}{x^{3}}}{4}\right)}}}{30}$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x^{3}}}}}{120} = \frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{3}\right)}}}}{120}$$

For steps, see derivative calculator.

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{3}\right)}}}}{120} = \frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{3 x^{2}}}}}{120}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=\frac{1}{3}$$$ and $$$f{\left(x \right)} = \frac{e^{x}}{x^{2}}$$$:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{3 x^{2}}}}}{120} = \frac{{\color{red}{\left(\frac{\lim_{x \to \infty} \frac{e^{x}}{x^{2}}}{3}\right)}}}{120}$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x^{2}}}}}{360} = \frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{2}\right)}}}}{360}$$

For steps, see derivative calculator.

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x^{2}\right)}}}}{360} = \frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{2 x}}}}{360}$$

Apply the constant multiple rule $$$\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)}$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(x \right)} = \frac{e^{x}}{x}$$$:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{2 x}}}}{360} = \frac{{\color{red}{\left(\frac{\lim_{x \to \infty} \frac{e^{x}}{x}}{2}\right)}}}{360}$$

Since we have an indeterminate form of type $$$\frac{\infty}{\infty}$$$, we can apply the l'Hopital's rule:

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{e^{x}}{x}}}}{720} = \frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x\right)}}}}{720}$$

For steps, see derivative calculator.

$$\frac{{\color{red}{\lim_{x \to \infty} \frac{\frac{d}{dx}\left(e^{x}\right)}{\frac{d}{dx}\left(x\right)}}}}{720} = \frac{{\color{red}{\lim_{x \to \infty} e^{x}}}}{720}$$

The function grows without a bound:

$$\lim_{x \to \infty} e^{x} = \infty$$

Therefore,

$$\lim_{x \to \infty} \frac{e^{x}}{x^{6}} = \infty$$

Answer: $$$\lim_{x \to \infty} \frac{e^{x}}{x^{6}}=\infty$$$


Please try a new game Rotatly