極限計算機
極限を段階的に計算
この無料の計算機は、手順を示しながら、指定された点(無限大を含む)における与えられた関数の極限(両側または片側、左極限および右極限を含む)を求めます。
極限(不定形を含む)を扱うために、さまざまな手法を用います:極限法則、式の書き換え・簡単化、ロピタルの定理、分母の有理化、自然対数を取る、など。
Solution
Your input: find $$$\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}}$$$
Multiply and divide by $$$x$$$:
$${\color{red}{\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}}}} = {\color{red}{\lim_{x \to \infty} \frac{x \frac{x + 1}{x}}{x \frac{\sqrt[3]{x^{3} + 1}}{x}}}}$$
Divide:
$${\color{red}{\lim_{x \to \infty} \frac{x \frac{x + 1}{x}}{x \frac{\sqrt[3]{x^{3} + 1}}{x}}}} = {\color{red}{\lim_{x \to \infty} \frac{1 + \frac{1}{x}}{\sqrt[3]{1 + \frac{1}{x^{3}}}}}}$$
The limit of the quotient is the quotient of limits:
$${\color{red}{\lim_{x \to \infty} \frac{1 + \frac{1}{x}}{\sqrt[3]{1 + \frac{1}{x^{3}}}}}} = {\color{red}{\frac{\lim_{x \to \infty}\left(1 + \frac{1}{x}\right)}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}}}$$
The limit of a sum/difference is the sum/difference of limits:
$$\frac{{\color{red}{\lim_{x \to \infty}\left(1 + \frac{1}{x}\right)}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{{\color{red}{\left(\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x}\right)}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$
The limit of a constant is equal to the constant:
$$\frac{\lim_{x \to \infty} \frac{1}{x} + {\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{\lim_{x \to \infty} \frac{1}{x} + {\color{red}{1}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$
The limit of a quotient is the quotient of limits:
$$\frac{1 + {\color{red}{\lim_{x \to \infty} \frac{1}{x}}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{1 + {\color{red}{\frac{\lim_{x \to \infty} 1}{\lim_{x \to \infty} x}}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$
The limit of a constant is equal to the constant:
$$\frac{1 + \frac{{\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} x}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{1 + \frac{{\color{red}{1}}}{\lim_{x \to \infty} x}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$
Constant divided by a very big number equals $$$0$$$:
$$\frac{1 + {\color{red}{1 \frac{1}{\lim_{x \to \infty} x}}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}} = \frac{1 + {\color{red}{\left(0\right)}}}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}$$
Move the limit under the power:
$${\color{red}{\lim_{x \to \infty} \sqrt[3]{1 + \frac{1}{x^{3}}}}}^{-1} = {\color{red}{\sqrt[3]{\lim_{x \to \infty}\left(1 + \frac{1}{x^{3}}\right)}}}^{-1}$$
The limit of a sum/difference is the sum/difference of limits:
$$\frac{1}{\sqrt[3]{{\color{red}{\lim_{x \to \infty}\left(1 + \frac{1}{x^{3}}\right)}}}} = \frac{1}{\sqrt[3]{{\color{red}{\left(\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x^{3}}\right)}}}}$$
The limit of a constant is equal to the constant:
$$\frac{1}{\sqrt[3]{\lim_{x \to \infty} \frac{1}{x^{3}} + {\color{red}{\lim_{x \to \infty} 1}}}} = \frac{1}{\sqrt[3]{\lim_{x \to \infty} \frac{1}{x^{3}} + {\color{red}{1}}}}$$
The limit of a quotient is the quotient of limits:
$$\frac{1}{\sqrt[3]{1 + {\color{red}{\lim_{x \to \infty} \frac{1}{x^{3}}}}}} = \frac{1}{\sqrt[3]{1 + {\color{red}{\frac{\lim_{x \to \infty} 1}{\lim_{x \to \infty} x^{3}}}}}}$$
The limit of a constant is equal to the constant:
$$\frac{1}{\sqrt[3]{1 + \frac{{\color{red}{\lim_{x \to \infty} 1}}}{\lim_{x \to \infty} x^{3}}}} = \frac{1}{\sqrt[3]{1 + \frac{{\color{red}{1}}}{\lim_{x \to \infty} x^{3}}}}$$
Constant divided by a very big number equals $$$0$$$:
$$\frac{1}{\sqrt[3]{1 + {\color{red}{1 \frac{1}{\lim_{x \to \infty} x^{3}}}}}} = \frac{1}{\sqrt[3]{1 + {\color{red}{\left(0\right)}}}}$$
Therefore,
$$\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}} = 1$$
Answer: $$$\lim_{x \to \infty} \frac{x + 1}{\sqrt[3]{x^{3} + 1}}=1$$$