$$$x e^{x}$$$の導関数

この計算機は、手順を示しながら $$$x e^{x}$$$ の導関数を求めます。

関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)

自動検出のため、空欄のままにしてください。
特定の点での導関数の値が不要な場合は、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\frac{d}{dx} \left(x e^{x}\right)$$$ を求めよ。

解答

積の微分法 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$$$$f{\left(x \right)} = x$$$$$$g{\left(x \right)} = e^{x}$$$ に適用する:

$${\color{red}\left(\frac{d}{dx} \left(x e^{x}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) e^{x} + x \frac{d}{dx} \left(e^{x}\right)\right)}$$

$$$n = 1$$$ を用いて冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ を適用すると、すなわち $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$x \frac{d}{dx} \left(e^{x}\right) + e^{x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x \frac{d}{dx} \left(e^{x}\right) + e^{x} {\color{red}\left(1\right)}$$

指数関数の微分は$$$\frac{d}{dx} \left(e^{x}\right) = e^{x}$$$です:

$$x {\color{red}\left(\frac{d}{dx} \left(e^{x}\right)\right)} + e^{x} = x {\color{red}\left(e^{x}\right)} + e^{x}$$

簡単化せよ:

$$x e^{x} + e^{x} = \left(x + 1\right) e^{x}$$

したがって、$$$\frac{d}{dx} \left(x e^{x}\right) = \left(x + 1\right) e^{x}$$$

解答

$$$\frac{d}{dx} \left(x e^{x}\right) = \left(x + 1\right) e^{x}$$$A


Please try a new game Rotatly