$$$x e^{x}$$$的导数
您的输入
求$$$\frac{d}{dx} \left(x e^{x}\right)$$$。
解答
对 $$$f{\left(x \right)} = x$$$ 和 $$$g{\left(x \right)} = e^{x}$$$ 应用乘积法则 $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(x e^{x}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) e^{x} + x \frac{d}{dx} \left(e^{x}\right)\right)}$$应用幂法则 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$,取 $$$n = 1$$$,也就是说,$$$\frac{d}{dx} \left(x\right) = 1$$$:
$$x \frac{d}{dx} \left(e^{x}\right) + e^{x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x \frac{d}{dx} \left(e^{x}\right) + e^{x} {\color{red}\left(1\right)}$$指数函数的导数为 $$$\frac{d}{dx} \left(e^{x}\right) = e^{x}$$$:
$$x {\color{red}\left(\frac{d}{dx} \left(e^{x}\right)\right)} + e^{x} = x {\color{red}\left(e^{x}\right)} + e^{x}$$化简:
$$x e^{x} + e^{x} = \left(x + 1\right) e^{x}$$因此,$$$\frac{d}{dx} \left(x e^{x}\right) = \left(x + 1\right) e^{x}$$$。
答案
$$$\frac{d}{dx} \left(x e^{x}\right) = \left(x + 1\right) e^{x}$$$A
Please try a new game Rotatly