$$$x^{4} - 6 x^{2}$$$の導関数

この計算機は、手順を示しながら $$$x^{4} - 6 x^{2}$$$ の導関数を求めます。

関連する計算機: 対数微分計算機, 陰関数微分計算機(手順付き)

自動検出のため、空欄のままにしてください。
特定の点での導関数の値が不要な場合は、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right)$$$ を求めよ。

解答

和/差の導関数は、導関数の和/差である:

$${\color{red}\left(\frac{d}{dx} \left(x^{4} - 6 x^{2}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{4}\right) - \frac{d}{dx} \left(6 x^{2}\right)\right)}$$

冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = 4$$$ に対して適用する:

$${\color{red}\left(\frac{d}{dx} \left(x^{4}\right)\right)} - \frac{d}{dx} \left(6 x^{2}\right) = {\color{red}\left(4 x^{3}\right)} - \frac{d}{dx} \left(6 x^{2}\right)$$

定数倍の法則 $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$$$$c = 6$$$$$$f{\left(x \right)} = x^{2}$$$ に対して適用します:

$$4 x^{3} - {\color{red}\left(\frac{d}{dx} \left(6 x^{2}\right)\right)} = 4 x^{3} - {\color{red}\left(6 \frac{d}{dx} \left(x^{2}\right)\right)}$$

冪法則 $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$$$$n = 2$$$ に対して適用する:

$$4 x^{3} - 6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 4 x^{3} - 6 {\color{red}\left(2 x\right)}$$

簡単化せよ:

$$4 x^{3} - 12 x = 4 x \left(x^{2} - 3\right)$$

したがって、$$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right) = 4 x \left(x^{2} - 3\right)$$$

解答

$$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right) = 4 x \left(x^{2} - 3\right)$$$A


Please try a new game Rotatly