Derivatan av $$$x^{4} - 6 x^{2}$$$
Relaterade kalkylatorer: Kalkylator för logaritmisk derivering, Räknare för implicit derivering med steg
Din inmatning
Bestäm $$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right)$$$.
Lösning
Derivatan av en summa/differens är summan/differensen av derivatorna:
$${\color{red}\left(\frac{d}{dx} \left(x^{4} - 6 x^{2}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{4}\right) - \frac{d}{dx} \left(6 x^{2}\right)\right)}$$Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 4$$$:
$${\color{red}\left(\frac{d}{dx} \left(x^{4}\right)\right)} - \frac{d}{dx} \left(6 x^{2}\right) = {\color{red}\left(4 x^{3}\right)} - \frac{d}{dx} \left(6 x^{2}\right)$$Tillämpa konstantfaktorregeln $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ med $$$c = 6$$$ och $$$f{\left(x \right)} = x^{2}$$$:
$$4 x^{3} - {\color{red}\left(\frac{d}{dx} \left(6 x^{2}\right)\right)} = 4 x^{3} - {\color{red}\left(6 \frac{d}{dx} \left(x^{2}\right)\right)}$$Tillämpa potensregeln $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ med $$$n = 2$$$:
$$4 x^{3} - 6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 4 x^{3} - 6 {\color{red}\left(2 x\right)}$$Förenkla:
$$4 x^{3} - 12 x = 4 x \left(x^{2} - 3\right)$$Alltså, $$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right) = 4 x \left(x^{2} - 3\right)$$$.
Svar
$$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right) = 4 x \left(x^{2} - 3\right)$$$A