Παράγωγος της $$$x^{4} - 6 x^{2}$$$

Η αριθμομηχανή θα βρει την παράγωγο της συνάρτησης $$$x^{4} - 6 x^{2}$$$, με εμφάνιση των βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής λογαριθμικής παραγώγισης, Υπολογιστής Έμμεσης Παραγώγισης με Βήματα

Αφήστε κενό για αυτόματη ανίχνευση.
Αφήστε κενό, αν δεν χρειάζεστε την τιμή της παραγώγου σε ένα συγκεκριμένο σημείο.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right)$$$.

Λύση

Η παράγωγος του αθροίσματος/της διαφοράς είναι το άθροισμα/η διαφορά των παραγώγων:

$${\color{red}\left(\frac{d}{dx} \left(x^{4} - 6 x^{2}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{4}\right) - \frac{d}{dx} \left(6 x^{2}\right)\right)}$$

Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 4$$$:

$${\color{red}\left(\frac{d}{dx} \left(x^{4}\right)\right)} - \frac{d}{dx} \left(6 x^{2}\right) = {\color{red}\left(4 x^{3}\right)} - \frac{d}{dx} \left(6 x^{2}\right)$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασιαστή $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ με $$$c = 6$$$ και $$$f{\left(x \right)} = x^{2}$$$:

$$4 x^{3} - {\color{red}\left(\frac{d}{dx} \left(6 x^{2}\right)\right)} = 4 x^{3} - {\color{red}\left(6 \frac{d}{dx} \left(x^{2}\right)\right)}$$

Εφαρμόστε τον κανόνα της δύναμης $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ με $$$n = 2$$$:

$$4 x^{3} - 6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 4 x^{3} - 6 {\color{red}\left(2 x\right)}$$

Απλοποιήστε:

$$4 x^{3} - 12 x = 4 x \left(x^{2} - 3\right)$$

Άρα, $$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right) = 4 x \left(x^{2} - 3\right)$$$.

Απάντηση

$$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right) = 4 x \left(x^{2} - 3\right)$$$A


Please try a new game Rotatly