Derivata di $$$\ln\left(\sin{\left(x \right)}\right)$$$
Calcolatrici correlate: Calcolatrice di derivazione logaritmica, Calcolatore di derivazione implicita con passaggi
Il tuo input
Trova $$$\frac{d}{dx} \left(\ln\left(\sin{\left(x \right)}\right)\right)$$$.
Soluzione
La funzione $$$\ln\left(\sin{\left(x \right)}\right)$$$ è la composizione $$$f{\left(g{\left(x \right)} \right)}$$$ di due funzioni $$$f{\left(u \right)} = \ln\left(u\right)$$$ e $$$g{\left(x \right)} = \sin{\left(x \right)}$$$.
Applica la regola della catena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\sin{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$La derivata del logaritmo naturale è $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$Torna alla variabile originale:
$$\frac{\frac{d}{dx} \left(\sin{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(\sin{\left(x \right)}\right)}{{\color{red}\left(\sin{\left(x \right)}\right)}}$$La derivata del seno è $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}}{\sin{\left(x \right)}} = \frac{{\color{red}\left(\cos{\left(x \right)}\right)}}{\sin{\left(x \right)}}$$Semplifica:
$$\frac{\cos{\left(x \right)}}{\sin{\left(x \right)}} = \frac{1}{\tan{\left(x \right)}}$$Quindi, $$$\frac{d}{dx} \left(\ln\left(\sin{\left(x \right)}\right)\right) = \frac{1}{\tan{\left(x \right)}}$$$.
Risposta
$$$\frac{d}{dx} \left(\ln\left(\sin{\left(x \right)}\right)\right) = \frac{1}{\tan{\left(x \right)}}$$$A