Dérivée de $$$e^{- t}$$$
Calculatrices associées: Calculatrice de dérivation logarithmique, Calculatrice de dérivation implicite pas à pas
Votre saisie
Déterminez $$$\frac{d}{dt} \left(e^{- t}\right)$$$.
Solution
La fonction $$$e^{- t}$$$ est la composée $$$f{\left(g{\left(t \right)} \right)}$$$ de deux fonctions $$$f{\left(u \right)} = e^{u}$$$ et $$$g{\left(t \right)} = - t$$$.
Appliquez la règle de la chaîne $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dt} \left(e^{- t}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dt} \left(- t\right)\right)}$$La dérivée de la fonction exponentielle est $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$ :
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dt} \left(- t\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dt} \left(- t\right)$$Revenir à la variable initiale:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dt} \left(- t\right) = e^{{\color{red}\left(- t\right)}} \frac{d}{dt} \left(- t\right)$$Appliquez la règle du facteur constant $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ avec $$$c = -1$$$ et $$$f{\left(t \right)} = t$$$:
$$e^{- t} {\color{red}\left(\frac{d}{dt} \left(- t\right)\right)} = e^{- t} {\color{red}\left(- \frac{d}{dt} \left(t\right)\right)}$$Appliquez la règle de puissance $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ avec $$$n = 1$$$, en d'autres termes, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$- e^{- t} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = - e^{- t} {\color{red}\left(1\right)}$$Ainsi, $$$\frac{d}{dt} \left(e^{- t}\right) = - e^{- t}$$$.
Réponse
$$$\frac{d}{dt} \left(e^{- t}\right) = - e^{- t}$$$A