Derivada de $$$e^{- t}$$$
Calculadoras relacionadas: Calculadora de diferenciación logarítmica, Calculadora de derivación implícita con pasos
Tu entrada
Halla $$$\frac{d}{dt} \left(e^{- t}\right)$$$.
Solución
La función $$$e^{- t}$$$ es la composición $$$f{\left(g{\left(t \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = e^{u}$$$ y $$$g{\left(t \right)} = - t$$$.
Aplica la regla de la cadena $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dt} \left(e^{- t}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dt} \left(- t\right)\right)}$$La derivada de la función exponencial es $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dt} \left(- t\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dt} \left(- t\right)$$Volver a la variable original:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dt} \left(- t\right) = e^{{\color{red}\left(- t\right)}} \frac{d}{dt} \left(- t\right)$$Aplica la regla del factor constante $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ con $$$c = -1$$$ y $$$f{\left(t \right)} = t$$$:
$$e^{- t} {\color{red}\left(\frac{d}{dt} \left(- t\right)\right)} = e^{- t} {\color{red}\left(- \frac{d}{dt} \left(t\right)\right)}$$Aplica la regla de la potencia $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$- e^{- t} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = - e^{- t} {\color{red}\left(1\right)}$$Por lo tanto, $$$\frac{d}{dt} \left(e^{- t}\right) = - e^{- t}$$$.
Respuesta
$$$\frac{d}{dt} \left(e^{- t}\right) = - e^{- t}$$$A