Funktion $$$e^{- t}$$$ derivaatta
Aiheeseen liittyvät laskurit: Logaritmisen derivoinnin laskin, Vaiheittainen implisiittisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d}{dt} \left(e^{- t}\right)$$$.
Ratkaisu
Funktio $$$e^{- t}$$$ on kahden funktion $$$f{\left(u \right)} = e^{u}$$$ ja $$$g{\left(t \right)} = - t$$$ yhdistelmä $$$f{\left(g{\left(t \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dt} \left(e^{- t}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dt} \left(- t\right)\right)}$$Eksponenttifunktion derivaatta on $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$${\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dt} \left(- t\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dt} \left(- t\right)$$Palaa alkuperäiseen muuttujaan:
$$e^{{\color{red}\left(u\right)}} \frac{d}{dt} \left(- t\right) = e^{{\color{red}\left(- t\right)}} \frac{d}{dt} \left(- t\right)$$Sovella vakion kerroinsääntöä $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ käyttäen $$$c = -1$$$ ja $$$f{\left(t \right)} = t$$$:
$$e^{- t} {\color{red}\left(\frac{d}{dt} \left(- t\right)\right)} = e^{- t} {\color{red}\left(- \frac{d}{dt} \left(t\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dt} \left(t\right) = 1$$$:
$$- e^{- t} {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = - e^{- t} {\color{red}\left(1\right)}$$Näin ollen, $$$\frac{d}{dt} \left(e^{- t}\right) = - e^{- t}$$$.
Vastaus
$$$\frac{d}{dt} \left(e^{- t}\right) = - e^{- t}$$$A