Funktion $$$e^{x} \cos{\left(2 x \right)}$$$ integraali

Laskin löytää funktion $$$e^{x} \cos{\left(2 x \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int e^{x} \cos{\left(2 x \right)}\, dx$$$.

Ratkaisu

Integraalin $$$\int{e^{x} \cos{\left(2 x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Olkoon $$$\operatorname{u}=\cos{\left(2 x \right)}$$$ ja $$$\operatorname{dv}=e^{x} dx$$$.

Tällöin $$$\operatorname{du}=\left(\cos{\left(2 x \right)}\right)^{\prime }dx=- 2 \sin{\left(2 x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (vaiheet ovat nähtävissä »).

Siis,

$${\color{red}{\int{e^{x} \cos{\left(2 x \right)} d x}}}={\color{red}{\left(\cos{\left(2 x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- 2 \sin{\left(2 x \right)}\right) d x}\right)}}={\color{red}{\left(e^{x} \cos{\left(2 x \right)} - \int{\left(- 2 e^{x} \sin{\left(2 x \right)}\right)d x}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=-2$$$ ja $$$f{\left(x \right)} = e^{x} \sin{\left(2 x \right)}$$$:

$$e^{x} \cos{\left(2 x \right)} - {\color{red}{\int{\left(- 2 e^{x} \sin{\left(2 x \right)}\right)d x}}} = e^{x} \cos{\left(2 x \right)} - {\color{red}{\left(- 2 \int{e^{x} \sin{\left(2 x \right)} d x}\right)}}$$

Integraalin $$$\int{e^{x} \sin{\left(2 x \right)} d x}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Olkoon $$$\operatorname{u}=\sin{\left(2 x \right)}$$$ ja $$$\operatorname{dv}=e^{x} dx$$$.

Tällöin $$$\operatorname{du}=\left(\sin{\left(2 x \right)}\right)^{\prime }dx=2 \cos{\left(2 x \right)} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (vaiheet ovat nähtävissä »).

Näin ollen,

$$e^{x} \cos{\left(2 x \right)} + 2 {\color{red}{\int{e^{x} \sin{\left(2 x \right)} d x}}}=e^{x} \cos{\left(2 x \right)} + 2 {\color{red}{\left(\sin{\left(2 x \right)} \cdot e^{x}-\int{e^{x} \cdot 2 \cos{\left(2 x \right)} d x}\right)}}=e^{x} \cos{\left(2 x \right)} + 2 {\color{red}{\left(e^{x} \sin{\left(2 x \right)} - \int{2 e^{x} \cos{\left(2 x \right)} d x}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=2$$$ ja $$$f{\left(x \right)} = e^{x} \cos{\left(2 x \right)}$$$:

$$2 e^{x} \sin{\left(2 x \right)} + e^{x} \cos{\left(2 x \right)} - 2 {\color{red}{\int{2 e^{x} \cos{\left(2 x \right)} d x}}} = 2 e^{x} \sin{\left(2 x \right)} + e^{x} \cos{\left(2 x \right)} - 2 {\color{red}{\left(2 \int{e^{x} \cos{\left(2 x \right)} d x}\right)}}$$

Olemme päätyneet integraaliin, jonka olemme jo aiemmin nähneet.

Näin ollen olemme saaneet seuraavan yksinkertaisen integraalia koskevan yhtälön:

$$\int{e^{x} \cos{\left(2 x \right)} d x} = 2 e^{x} \sin{\left(2 x \right)} + e^{x} \cos{\left(2 x \right)} - 4 \int{e^{x} \cos{\left(2 x \right)} d x}$$

Ratkaisemalla sen saamme, että

$$\int{e^{x} \cos{\left(2 x \right)} d x} = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5}$$

Näin ollen,

$$\int{e^{x} \cos{\left(2 x \right)} d x} = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5}$$

Lisää integrointivakio:

$$\int{e^{x} \cos{\left(2 x \right)} d x} = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5}+C$$

Vastaus

$$$\int e^{x} \cos{\left(2 x \right)}\, dx = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5} + C$$$A


Please try a new game Rotatly