$$$e^{x} \cos{\left(2 x \right)}$$$ 的积分
您的输入
求$$$\int e^{x} \cos{\left(2 x \right)}\, dx$$$。
解答
对于积分$$$\int{e^{x} \cos{\left(2 x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\cos{\left(2 x \right)}$$$ 和 $$$\operatorname{dv}=e^{x} dx$$$。
则 $$$\operatorname{du}=\left(\cos{\left(2 x \right)}\right)^{\prime }dx=- 2 \sin{\left(2 x \right)} dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (步骤见 »)。
积分变为
$${\color{red}{\int{e^{x} \cos{\left(2 x \right)} d x}}}={\color{red}{\left(\cos{\left(2 x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- 2 \sin{\left(2 x \right)}\right) d x}\right)}}={\color{red}{\left(e^{x} \cos{\left(2 x \right)} - \int{\left(- 2 e^{x} \sin{\left(2 x \right)}\right)d x}\right)}}$$
对 $$$c=-2$$$ 和 $$$f{\left(x \right)} = e^{x} \sin{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$e^{x} \cos{\left(2 x \right)} - {\color{red}{\int{\left(- 2 e^{x} \sin{\left(2 x \right)}\right)d x}}} = e^{x} \cos{\left(2 x \right)} - {\color{red}{\left(- 2 \int{e^{x} \sin{\left(2 x \right)} d x}\right)}}$$
对于积分$$$\int{e^{x} \sin{\left(2 x \right)} d x}$$$,使用分部积分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
设 $$$\operatorname{u}=\sin{\left(2 x \right)}$$$ 和 $$$\operatorname{dv}=e^{x} dx$$$。
则 $$$\operatorname{du}=\left(\sin{\left(2 x \right)}\right)^{\prime }dx=2 \cos{\left(2 x \right)} dx$$$ (步骤见 »),并且 $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (步骤见 »)。
因此,
$$e^{x} \cos{\left(2 x \right)} + 2 {\color{red}{\int{e^{x} \sin{\left(2 x \right)} d x}}}=e^{x} \cos{\left(2 x \right)} + 2 {\color{red}{\left(\sin{\left(2 x \right)} \cdot e^{x}-\int{e^{x} \cdot 2 \cos{\left(2 x \right)} d x}\right)}}=e^{x} \cos{\left(2 x \right)} + 2 {\color{red}{\left(e^{x} \sin{\left(2 x \right)} - \int{2 e^{x} \cos{\left(2 x \right)} d x}\right)}}$$
对 $$$c=2$$$ 和 $$$f{\left(x \right)} = e^{x} \cos{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$$2 e^{x} \sin{\left(2 x \right)} + e^{x} \cos{\left(2 x \right)} - 2 {\color{red}{\int{2 e^{x} \cos{\left(2 x \right)} d x}}} = 2 e^{x} \sin{\left(2 x \right)} + e^{x} \cos{\left(2 x \right)} - 2 {\color{red}{\left(2 \int{e^{x} \cos{\left(2 x \right)} d x}\right)}}$$
我们得到了一个之前见过的积分。
因此,我们得到了关于该积分的如下简单等式:
$$\int{e^{x} \cos{\left(2 x \right)} d x} = 2 e^{x} \sin{\left(2 x \right)} + e^{x} \cos{\left(2 x \right)} - 4 \int{e^{x} \cos{\left(2 x \right)} d x}$$
解得
$$\int{e^{x} \cos{\left(2 x \right)} d x} = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5}$$
因此,
$$\int{e^{x} \cos{\left(2 x \right)} d x} = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5}$$
加上积分常数:
$$\int{e^{x} \cos{\left(2 x \right)} d x} = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5}+C$$
答案
$$$\int e^{x} \cos{\left(2 x \right)}\, dx = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5} + C$$$A