Integral of $$$e^{x} \cos{\left(2 x \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int e^{x} \cos{\left(2 x \right)}\, dx$$$.
Solution
For the integral $$$\int{e^{x} \cos{\left(2 x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\cos{\left(2 x \right)}$$$ and $$$\operatorname{dv}=e^{x} dx$$$.
Then $$$\operatorname{du}=\left(\cos{\left(2 x \right)}\right)^{\prime }dx=- 2 \sin{\left(2 x \right)} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (steps can be seen »).
Thus,
$${\color{red}{\int{e^{x} \cos{\left(2 x \right)} d x}}}={\color{red}{\left(\cos{\left(2 x \right)} \cdot e^{x}-\int{e^{x} \cdot \left(- 2 \sin{\left(2 x \right)}\right) d x}\right)}}={\color{red}{\left(e^{x} \cos{\left(2 x \right)} - \int{\left(- 2 e^{x} \sin{\left(2 x \right)}\right)d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=-2$$$ and $$$f{\left(x \right)} = e^{x} \sin{\left(2 x \right)}$$$:
$$e^{x} \cos{\left(2 x \right)} - {\color{red}{\int{\left(- 2 e^{x} \sin{\left(2 x \right)}\right)d x}}} = e^{x} \cos{\left(2 x \right)} - {\color{red}{\left(- 2 \int{e^{x} \sin{\left(2 x \right)} d x}\right)}}$$
For the integral $$$\int{e^{x} \sin{\left(2 x \right)} d x}$$$, use integration by parts $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Let $$$\operatorname{u}=\sin{\left(2 x \right)}$$$ and $$$\operatorname{dv}=e^{x} dx$$$.
Then $$$\operatorname{du}=\left(\sin{\left(2 x \right)}\right)^{\prime }dx=2 \cos{\left(2 x \right)} dx$$$ (steps can be seen ») and $$$\operatorname{v}=\int{e^{x} d x}=e^{x}$$$ (steps can be seen »).
The integral becomes
$$e^{x} \cos{\left(2 x \right)} + 2 {\color{red}{\int{e^{x} \sin{\left(2 x \right)} d x}}}=e^{x} \cos{\left(2 x \right)} + 2 {\color{red}{\left(\sin{\left(2 x \right)} \cdot e^{x}-\int{e^{x} \cdot 2 \cos{\left(2 x \right)} d x}\right)}}=e^{x} \cos{\left(2 x \right)} + 2 {\color{red}{\left(e^{x} \sin{\left(2 x \right)} - \int{2 e^{x} \cos{\left(2 x \right)} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=2$$$ and $$$f{\left(x \right)} = e^{x} \cos{\left(2 x \right)}$$$:
$$2 e^{x} \sin{\left(2 x \right)} + e^{x} \cos{\left(2 x \right)} - 2 {\color{red}{\int{2 e^{x} \cos{\left(2 x \right)} d x}}} = 2 e^{x} \sin{\left(2 x \right)} + e^{x} \cos{\left(2 x \right)} - 2 {\color{red}{\left(2 \int{e^{x} \cos{\left(2 x \right)} d x}\right)}}$$
We've arrived to an integral that we already saw.
Thus, we've obtained the following simple equation with respect to the integral:
$$\int{e^{x} \cos{\left(2 x \right)} d x} = 2 e^{x} \sin{\left(2 x \right)} + e^{x} \cos{\left(2 x \right)} - 4 \int{e^{x} \cos{\left(2 x \right)} d x}$$
Solving it, we get that
$$\int{e^{x} \cos{\left(2 x \right)} d x} = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5}$$
Therefore,
$$\int{e^{x} \cos{\left(2 x \right)} d x} = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5}$$
Add the constant of integration:
$$\int{e^{x} \cos{\left(2 x \right)} d x} = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5}+C$$
Answer
$$$\int e^{x} \cos{\left(2 x \right)}\, dx = \frac{\left(2 \sin{\left(2 x \right)} + \cos{\left(2 x \right)}\right) e^{x}}{5} + C$$$A