Funktion $$$8 \ln\left(e^{2}\right) - \ln\left(e^{12}\right)$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \left(8 \ln\left(e^{2}\right) - \ln\left(e^{12}\right)\right)\, de$$$.
Ratkaisu
Syöte kirjoitetaan muotoon: $$$\int{\left(8 \ln{\left(e^{2} \right)} - \ln{\left(e^{12} \right)}\right)d e}=\int{4 \ln{\left(e \right)} d e}$$$.
Sovella vakiokertoimen sääntöä $$$\int c f{\left(e \right)}\, de = c \int f{\left(e \right)}\, de$$$ käyttäen $$$c=4$$$ ja $$$f{\left(e \right)} = \ln{\left(e \right)}$$$:
$${\color{red}{\int{4 \ln{\left(e \right)} d e}}} = {\color{red}{\left(4 \int{\ln{\left(e \right)} d e}\right)}}$$
Integraalin $$$\int{\ln{\left(e \right)} d e}$$$ kohdalla käytä osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Olkoon $$$\operatorname{u}=\ln{\left(e \right)}$$$ ja $$$\operatorname{dv}=de$$$.
Tällöin $$$\operatorname{du}=\left(\ln{\left(e \right)}\right)^{\prime }de=\frac{de}{e}$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d e}=e$$$ (vaiheet ovat nähtävissä »).
Integraali muuttuu muotoon
$$4 {\color{red}{\int{\ln{\left(e \right)} d e}}}=4 {\color{red}{\left(\ln{\left(e \right)} \cdot e-\int{e \cdot \frac{1}{e} d e}\right)}}=4 {\color{red}{\left(e \ln{\left(e \right)} - \int{1 d e}\right)}}$$
Sovella vakiosääntöä $$$\int c\, de = c e$$$ käyttäen $$$c=1$$$:
$$4 e \ln{\left(e \right)} - 4 {\color{red}{\int{1 d e}}} = 4 e \ln{\left(e \right)} - 4 {\color{red}{e}}$$
Näin ollen,
$$\int{4 \ln{\left(e \right)} d e} = 4 e \ln{\left(e \right)} - 4 e$$
Sievennä:
$$\int{4 \ln{\left(e \right)} d e} = 4 e \left(\ln{\left(e \right)} - 1\right)$$
Lisää integrointivakio:
$$\int{4 \ln{\left(e \right)} d e} = 4 e \left(\ln{\left(e \right)} - 1\right)+C$$
Vastaus
$$$\int \left(8 \ln\left(e^{2}\right) - \ln\left(e^{12}\right)\right)\, de = 4 e \left(\ln\left(e\right) - 1\right) + C$$$A